Skip to main content
Log in

Effect of Intramonolayer Hydrogen Bonding of Carboxyl Groups in Self-assembled Monolayers on a Single Force with Phenylurea on an AFM Probe Tip

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The molecular interaction force of the intermonolayer hydrogen bonding between phenylurea groups on a probe tip and carboxyl groups in self-assembled monolayers was measured directly by means of atomic force microscopy in ethanol. Gold-coated AFM probe tips were modified chemically with 2-(N′-phenylureido)ethanethiol possessing a terminal urea moiety, which is a well-known powerful functionality for forming stable hydrogen bondings with neutral and anionic species. Adhesion force measurements were carried out on gold substrates coated with a COOH-terminated SAM composed of 6-mercaptohexanoic acid in ethanol using the phenylurea-functionalized probe tip. The adhesion force observed was decreased in the presence of H2PO4 in the measurement bath, indicating that the intermonolayer hydrogen bonding between the phenylurea moieties and carboxyl groups attached covalently to the probe tip and substrate, respectively, is suppressed by the anion added to the measurement solution. The specific hydrogen-bonding force was measured on binary mixed SAMs prepared by mixing 6-mercaptohexanoic acid with 1-hexanethiol. The individual hydrogen-bonding force between the phenylurea-modified tip and the binary mixed SAMs with various fractions of MHA was evaluated by repetitive force measurements and their statistical analyses by an autocorrelation method. We discuss the effect of diluting the COOH-terminated component in the mixed SAM on the adhesion force and the single force between the phenylurea and carboxyl groups in terms of competition between intermonolayer and intramonolayer hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. H. Takano, J. R. Kenseth, S.-S. Wong, J. C. O’Brien, and M. D. Porter, Chem. Rev., 1999, 99, 2845.

    Article  CAS  PubMed  Google Scholar 

  2. W. F. Heinz and J. H. Hoh, Nanotechnology, 1999, 17, 143.

    CAS  Google Scholar 

  3. B. Samorì, Chem. Eur. J., 2000, 6, 4249.

    Article  PubMed  Google Scholar 

  4. A. Janshoff, M. Neitzert, Y. Oberdörfer, and H. Fuchs, Angew. Chem. Int. Ed., 2000, 39, 3212.

    Article  CAS  Google Scholar 

  5. T. Hugel and M. Seitz, Macromol. Rapid Commun., 2001, 22, 989.

    Article  CAS  Google Scholar 

  6. A. Ulman, “An Introduction to Ultrathin Organic Films: From Lagngmuir-Blodgett to Self-Assembly”, 1991, Academic Press, Sandiego, 54.

    Google Scholar 

  7. A. Ulman, Chem. Rev., 1996, 96, 1533.

    Article  CAS  PubMed  Google Scholar 

  8. C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, and C. M. Lieber, Science, 1994, 265, 2071.

    Article  CAS  PubMed  Google Scholar 

  9. A. Noy, C. D. Frisbie, L. F. Rozsnyai, M. S. Wrighton, and C. M. Lieber, J. Am. Chem. Soc., 1995, 117, 7943.

    Article  CAS  Google Scholar 

  10. D. V. Vezenov, A. Noy, L. F. Rozsnyai, and C. M. Lieber, J. Am. Chem. Soc., 1997, 119, 2006.

    Article  Google Scholar 

  11. E. W. van der Vegte and G. Hadziioannou, J. Phys. Chem. B, 1997, 101, 9563.

    Article  Google Scholar 

  12. E. W. van der Vegte and G. Hadziioannou, Langmuir, 1997, 13, 4357.

    Article  Google Scholar 

  13. A. Noy, C. H. Sanders, D. V. Vezenov, S. S. Wong, and C. M. Lieber, Langmuir, 1998, 14, 1508.

    Article  CAS  Google Scholar 

  14. S. K. Sinniah, A. B. Steel, C. J. Miller, and J. E. Rett-Robey, J. Am. Chem. Soc., 1996, 118, 8925.

    Article  CAS  Google Scholar 

  15. T. Ito, M. Namba, P. Bühlmann, and Y. Umezawa, Langmuir, 1997, 13, 4323.

    Article  CAS  Google Scholar 

  16. T. Ito, D. Citterio, P. Bühlmann, and Y. Umezawa, Langmuir, 1999, 15, 2788.

    Article  CAS  Google Scholar 

  17. T. Han, J. M. Williams, and T. P. Beebe, Jr., Anal. Chim. Acta, 1995, 307, 365.

    Article  CAS  Google Scholar 

  18. J. Zhang, J. Kirkham, C. Robinson, M. L. Wallwork, D. A. Smith, A. Marsh, and M. Wong, Anal. Chem., 2000, 72, 1973.

    Article  CAS  PubMed  Google Scholar 

  19. D. A. Smith, M. L. Wallwork, J. Zhang, J. Kirkham, C. Robinson, A. Marsh, and M. Wong, J. Phys. Chem. B, 2000, 104, 8862.

    Article  CAS  Google Scholar 

  20. E.-L. Florin, V. T. Moy, and H. E. Gaub, Science, 1994, 264, 415.

    Article  CAS  PubMed  Google Scholar 

  21. G. U. Lee, D. A. Kidwell, and R. J. Colton, Langmuir, 1994, 10, 354.

    Article  CAS  Google Scholar 

  22. G. U. Lee, L. A. Chrisey, and R. J. Colton, Science, 1994, 266, 771.

    Article  CAS  PubMed  Google Scholar 

  23. T. Boland and B. D. Ratner, Proc. Natl. Acad. Sci. U.S.A., 1995, 92, 5297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. L. A. Wenzler, G. L. Moyes, G. N. Raikar, R. L. Hansen, J. M. Harris, and T. P. Beebe, Jr., Langmuir, 1997, 13, 3761.

    Article  CAS  Google Scholar 

  25. L. A. Wenzler, G. L. Moyes, L. G. Olson, J. M. Harris, and T. P. Beebe, Jr., Anal. Chem., 1997, 69, 2855.

    Article  CAS  Google Scholar 

  26. Y.-S. Lo, N. D. Huefner, W. S. Chan, F. Stevens, J. M. Harris, and T. P. Beebe, Jr., Langmuir, 1999, 15, 1373.

    Article  CAS  Google Scholar 

  27. Y.-S. Lo, Y.-J. Zhu, and T. P. Beebe, Jr., Langmuir, 2001, 17, 3741.

    Article  CAS  Google Scholar 

  28. M. Conti, G. Falini, and B. Samorì, Angew. Chem. Int. Ed., 2000, 39, 215.

    Article  CAS  Google Scholar 

  29. C. Tromas, J. Rojo, J. M. de la Fuente, A. G. Barrientos, R. García, and S. Penadés, Angew. Chem. Int. Ed., 2001, 40, 3052.

    Article  CAS  Google Scholar 

  30. S. M. Rigby-Singleton, S. Allen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, and P. M. Williams, J. Chem. Soc., Perkin Trans. 2, 2002, 1722.

    Google Scholar 

  31. H. Schönherr, M. W. J. Beulen, J. Bügler, J. Huskens, F. C. J. M. van Veggel, D. N. Reinhoudt, and G. J. Vancso, J. Am. Chem. Soc., 2000, 122, 4963.

    Article  CAS  Google Scholar 

  32. S. Zapotoczny, T. Auletta, M. R. de Jong, H. Schönherr, J. Huskens, F. C. J. M. van Veggel, D. N. Reinhoudt, and G. J. Vancso, Langmuir, 2002, 18, 6988.

    Article  CAS  Google Scholar 

  33. T. Auletta, M. R. de Jong, A. Mulder, F. C. J. M. van Veggel, J. Huskens, R. N. Reinhoudt, S. Zou, S. Zapotoczny, H. Schönherr, G. J. Vancso, and L. Kuipers, J. Am. Chem. Soc., 2004, 126, 1577.

    Article  CAS  PubMed  Google Scholar 

  34. H. Skulason and C. D. Frisbie, J. Am. Chem. Soc., 2002, 124, 15125.

    Article  CAS  PubMed  Google Scholar 

  35. R. Gil, J.-C. Fiaud, J.-C. Poulin, and E. Schulz, Chem. Commun., 2003, 2234.

    Google Scholar 

  36. S. Kado and K. Kimura, Chem. Lett., 2001, 630.

    Google Scholar 

  37. S. Kado and K. Kimura, J. Am. Chem. Soc., 2003, 125, 4560.

    Article  CAS  PubMed  Google Scholar 

  38. S. Kado, K. Yamada, T. Murakami, and K. Kimura, J. Am. Chem. Soc., 2005, 127, 3026.

    Article  CAS  PubMed  Google Scholar 

  39. R. M. Crooks, L. Sun, C. Xu, S. L. Hill, and A. J. Ricco, Spectroscopy, 1993, 8, 28.

    CAS  Google Scholar 

  40. R. M. Crooks, H. C. Yang, L. J. McEllistrem, R. C. Thomas, and A. J. Ricco, Faraday Discuss., 1997, 107, 285.

    Article  CAS  Google Scholar 

  41. J. Zhao, L. Luo, X. Yang, E. Wang, and S. Dong, Electroanalysis, 1999, 11, 1108.

    Article  CAS  Google Scholar 

  42. K. Aoki and T. Kakiuchi, J. Electroanal. Chem., 1999, 478, 101.

    Article  CAS  Google Scholar 

  43. K. Kim and J. Kuwak, J. Electroanal. Chem., 2001, 512, 83.

    Article  CAS  Google Scholar 

  44. O. Gershevitz and C. N. Sukenik, J. Am. Chem. Soc., 2004, 126, 482.

    Article  CAS  PubMed  Google Scholar 

  45. S. E. Creager and J. Clarke, Langmuir, 1994, 10, 3675.

    Article  CAS  Google Scholar 

  46. J. van Esch, F. Schoonbeek, M. de Loos, H. Kooijman, A. L. Spek, R. M. Kellogg, and B. L. Feringa, Chem. Eur. J., 1999, 5, 937.

    Article  Google Scholar 

  47. F. S. Schoonbeek, J. H. van Esch, R. Hulst, R. M. Kellogg, and B. L. Feringa, Chem. Eur. J., 2000, 6, 2633.

    Article  CAS  PubMed  Google Scholar 

  48. M. de Loos, A. G. J. Ligtenbarg, J. van Esch, H. Kooijman, A. L. Spek, R. Hage, R. M. Kellogg, and B. L. Feringa, Eur. J. Org. Chem., 2000, 3675.

    Google Scholar 

  49. N. Mohmeyer and H.-W. Schmidt, Chem. Eur. J., 2005, 11, 863.

    Article  CAS  PubMed  Google Scholar 

  50. P. D. Beer and P. A. Gale, Angew. Chem. Int. Ed., 2001, 40, 486.

    Article  CAS  Google Scholar 

  51. S. Nishizawa, R. Kato, T. Hayashita, and N. Teramae, Anal. Sci., 1998, 14, 595.

    Article  CAS  Google Scholar 

  52. H. Jeong, E. M. Choi, S. O. Kang, K. C. Nam, and S. Jeon, Bull. Korean. Chem. Soc., 1999, 20, 1232.

    CAS  Google Scholar 

  53. B. Alonso, C. M. Casado, I. Cuadrado, M. Morán, and A. E. Kaifer, Chem. Commun., 2002, 1778.

    Google Scholar 

  54. S. Sasaki, D. Citterio, S. Ozawa, and K. Suzuki, J. Chem. Soc., Perkin. Trans. 2, 2001, 2309.

    Google Scholar 

  55. O. Hayashida, A. Shivanyuk, and J. Rebek, Jr., Angew. Chem. Int. Ed., 2002, 41, 3423.

    Article  CAS  Google Scholar 

  56. A. L. Sisson, J. P. Clare, L. H. Taylor, J. P. H. Charmant, and A. P. Davis, Chem. Commun., 2003, 2246.

    Google Scholar 

  57. R. C. Jagessar and D. H. Burns, Chem. Commun., 1997, 1685.

    Google Scholar 

  58. J. W. M. Nissink, H. Boerrigter, W. Verboom, D. N. Reinhoudt, and J. H. van der Maas, J. Chem. Soc., Perkin Trans. 2, 1998, 2541.

    Google Scholar 

  59. M. Vázquez, L. Fabbrizzi, A. Taglietti, R. M. Pedrido, A. M. González-Noya, and M. R. Bermejo, Angew. Chem. Int. Ed., 2004, 43, 1962.

    Article  CAS  Google Scholar 

  60. R. Varghese, S. J. George, and A. Ajayaghosh, Chem. Commun., 2005, 593.

    Google Scholar 

  61. H. Stephan, H. Spies, B. Johannsen, L. Klein, and F. Vögtle, Chem. Commun., 1999, 1875.

    Google Scholar 

  62. S. Huh, H.-T. Chen, J. W. Wiench, M. Pruski, and V. S.-Y. Lin, Angew. Chem. Int. Ed., 2005, 44, 1826.

    Article  CAS  Google Scholar 

  63. C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, J. Am. Chem. Soc., 1989, 111, 321.

    Article  CAS  Google Scholar 

  64. M. Nishizawa, T. Sunagawa, and H. Yoneyama, J. Electroanal. Chem., 1997, 436, 213.

    Article  CAS  Google Scholar 

  65. D. Hobara, M. Ota, S. Imabayashi, K. Niki, and T. Kakiuchi, J. Electroanal. Chem., 1998, 444, 113.

    Article  CAS  Google Scholar 

  66. T. Kakiuchi, M. Iida, N. Gon, D. Hobara, S. Imabayashi, and K. Niki, Langmuir, 2001, 17, 1599.

    Article  CAS  Google Scholar 

  67. J. P. Folkers, P. E. Laibinis, and G. M. Whitesides, Langmuir, 1992, 8, 1330.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kado, S., Murakami, T. & Kimura, K. Effect of Intramonolayer Hydrogen Bonding of Carboxyl Groups in Self-assembled Monolayers on a Single Force with Phenylurea on an AFM Probe Tip. ANAL. SCI. 22, 521–527 (2006). https://doi.org/10.2116/analsci.22.521

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.22.521

Navigation