Skip to main content
Log in

Highly Sensitive Electrochemical Immunosensing for Listeria Monocytogenes Based on 3,4,9,10-Perylene Tetracarboxylic Acid/ Graphene Ribbons as a Sensing Platform and Ferrocene/Gold Nanoparticles as an Amplifier

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

As a gram-positive foodborne pathogen, Listeria monocytogenes (LM) can cause many serious diseases to the human health coupled with high mortality rates; thus, constructing an effective method to detect LM is of great significance. Herein, a novel sandwich-type electrochemical immunosensor is proposed for LM by introducing 3,4,9,10-perylene tetracarboxylic acid/graphene ribbons (PTCA/GNR) nanohybrids as a sensing platform and ferrocene/gold nanoparticles (Fc/Au NPs) as a signal amplifier. The high conductivity and large surface area of GNR can increase the immobilizing amount of the primary antibody (PAb) and enhance the electron transport rate, while Au NPs can carry secondary antibodies (SAb) and Fc derivative (Fc-SH) to form a SAb-Au NPs-Fc signal amplifier. Through using Fc molecules as a signal probe, its peak current can appear and increase varied from the LM concentrations; hence, a highly sensitive sandwich-type immunosensor was constructed wide linear range from 10 to 2 - 104-CFU mL−1 and low limit of detection of low to 6 CFU mL−1. Furthermore, the specificity of the immunosensor was also studied and a satisfactory result was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. D. Silva, M. M. P. S. Neves, J. M. C. S. Magalhães, C. Freire, and C. Delerue-Matos, Trends Food Sci. & Technol., 2020, 99, 621.

    Article  CAS  Google Scholar 

  2. J. Ding, J. Lei, X. Ma, J. Gong, and W. Qin, Anal. Chem., 2014, 86, 9412.

    Article  CAS  PubMed  Google Scholar 

  3. X. Qi, Z. Wang, R. Lu, J. Liu, Y. Li, and Y. Chen, Food Chem., 2021, 338, 127837.

    Article  CAS  PubMed  Google Scholar 

  4. S. Eissa and M. Zourob, Microchim. Acta, 2020, 187, 486.

    Article  CAS  Google Scholar 

  5. C. Cheng, Y. Peng, J. Bai, X. Zhang, Y. Liu, X. Fan, B. Ning, and Z. Gao, Sens. Actuators, B, 2014, 190, 900.

    Article  CAS  Google Scholar 

  6. Q. Chen, J. Lin, C. Gan, Y. Wang, D. Wang, Y. Xiong, W. Lai, Y. Li, and M. Wang, Biosens. Bioelectron., 2015, 74, 504.

    Article  CAS  PubMed  Google Scholar 

  7. B. Giménez, N. Graiver, L. Giannuzzi, and N. Zaritzky, Food Control, 2021, 121, 107602.

    Article  Google Scholar 

  8. B. B. Tasbasi, B. C. Guner, M. Sudagidan, S. Ucak, M. Kavruk, and V. C. Ozalp, Anal. Biochem., 2019, 587, 113449.

    Article  CAS  PubMed  Google Scholar 

  9. S. Wachiralurpan, K. Chansiri, and P. A. Lieberzeit, Sens. Actuators, B, 2020, 308, 127678.

    Article  CAS  Google Scholar 

  10. J. Riu and B. Giussani, TrAC, Trends Anal. Chem., 2020, 126, 115863.

    Article  CAS  Google Scholar 

  11. X. Niu, W. Zheng, C. Yin, W. Weng, G. Li, W. Sun, and Y. Men, J. Electroanal. Chem., 2017, 806, 116.

    Article  CAS  Google Scholar 

  12. A. Liu, L. Shen, Z. Zeng, M. Sun, Y. Liu, S. Liu, C. Li, and X. Wang, Food Anal. Methods, 2018, 11, 215.

    Article  Google Scholar 

  13. N. F. D. Silva, M. M. P. S. Neves, J. M. C. S. Magalhães, C. Freire, and C. Delerue-Matos, Talanta, 2020, 216, 120976.

    Article  CAS  PubMed  Google Scholar 

  14. L. Jothi, S. K. Jaganathan, and G. Nageswaran, Mater. Chem. Phys., 2020, 242, 122514.

    Article  CAS  Google Scholar 

  15. P. Zhao, M. Ni, Y. Xu, C. Wang, C. Chen, X. Zhang, C. Li, Y. Xie, and J. Fei, Sens. Actuators, B, 2019, 299, 126997.

    Article  CAS  Google Scholar 

  16. K. Kunpatee, P. Chamsai, E. Mehmeti, D. M. Stankovic, A. Ortner, K. Kalcher, and A. Samphao, J. Electroanal. Chem., 2019, 855, 113630.

    Article  CAS  Google Scholar 

  17. R. Zhang, C. Zhang, F. Zheng, X. Li, C.-L. Sun, and W. Chen, Carbon, 2018, 126, 328.

    Article  CAS  Google Scholar 

  18. G. Zhu, Y. Yi, Z. Liu, H. J. Lee, and J. Chen, Electrochem. Commun., 2016, 66, 10.

    Article  CAS  Google Scholar 

  19. E. Mahmoudi, A. Hajian, M. Rezaei, A. Afkhami, A. Amine, and H. Bagheri, Microchem. J., 2019, 145, 242.

    Article  CAS  Google Scholar 

  20. Y. Yi, D. Zhang, Y. Ma, X. Wu, and G. Zhu, Anal. Chem., 2019, 91, 2908.

    Article  CAS  PubMed  Google Scholar 

  21. Q. Feng, X. Zhao, Y. Guo, M. Liu, and P. Wang, Biosens. Bioelectron., 2018, 108, 97.

    Article  CAS  PubMed  Google Scholar 

  22. L. Jothi, S. Neogi, S. k. Jaganathan, and G. Nageswaran, Biosens. Bioelectron., 2018, 105, 236.

    Article  PubMed  Google Scholar 

  23. N. Pajooheshpour, M. Rezaei, A. Hajian, A. Afkhami, M. Sillanpää, F. Arduini, and H. Bagheri, Sens. Actuators, B, 2018, 275, 180.

    Article  CAS  Google Scholar 

  24. D. Dziubak, K. Pułka-Ziach, and S. Sęk, J. Phys. Chem. C, 2020, 124, 17916.

    Article  CAS  Google Scholar 

  25. M. A. Casulli, I. Taurino, T. Hashimoto, S. Carrara, and T. Hayashita, Small, 2020, 16, 2003359.

    Article  CAS  Google Scholar 

  26. N. Rezvani Jalal, T. Madrakian, A. Afkhami, and A. Ghoorchian, ACS Appl. Mater. Interfaces, 2020, 12, 4859.

    Article  CAS  PubMed  Google Scholar 

  27. R. Cruz-Silva, A. Morelos-Gómez, S. Vega-Díaz, F. Tristán-López, A. L. Elias, N. Perea-López, H. Muramatsu, T. Hayashi, K. Fujisawa, Y. A. Kim, M. Endo, and M. Terrones, ACS Nano, 2013, 7, 2192.

    Article  CAS  PubMed  Google Scholar 

  28. F. Cui and X. Zhang, J. Electroanal. Chem., 2012, 669, 35.

    Article  CAS  Google Scholar 

  29. G. Goncalves, P. A. A. P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K. Singh, and J. Grácio, Chem. Mater., 2009, 21, 4796.

    Article  CAS  Google Scholar 

  30. D. Wang, Q. Chen, H. Huo, S. Bai, G. Cai, W. Lai, and J. Lin, Food Control, 2017, 73, 555.

    Article  CAS  Google Scholar 

  31. R. Wang, C. Ruan, D. Kanayeva, K. Lassiter, and Y. Li, Nano Lett., 2008, 8, 2625.

    Article  CAS  PubMed  Google Scholar 

  32. D. Davis, X. Guo, L. Musavi, C. S. Lin, S. H. Chen, and V. C. Wu, Ind. Biotechnol., 2013, 9, 31.

    Article  CAS  Google Scholar 

  33. Y. Lu, Y. Liu, Y. Zhao, W. Li, L. Qiu, and L. Li, J. Nanomater., 2016, 16, 1.

    Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Ding, W., Lv, Z. et al. Highly Sensitive Electrochemical Immunosensing for Listeria Monocytogenes Based on 3,4,9,10-Perylene Tetracarboxylic Acid/ Graphene Ribbons as a Sensing Platform and Ferrocene/Gold Nanoparticles as an Amplifier. ANAL. SCI. 37, 1701–1706 (2021). https://doi.org/10.2116/analsci.21P113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P113

Keywords

Navigation