Skip to main content
Log in

Thermodynamic Analysis of Duplex Formation of the Heterochiral DNA with l-Deoxyadenosine

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An l-DNA, the mirror-image isomer of natural DNA, has extraordinary nuclease resistance, and thus the molecules should be promising reagents for many applications, such as antisense technology. However, little is known about the structural and thermodynamic properties of DNAs with this modified nucleotide. In this study, we prepared the l-nucleotide (l-DA) and introduced it into oligodeoxyribonucleotides to assess the ability of the l-nucleotide as a functional molecule for many applications based on the DNA hybridization. Two decamers with an l-DA at the center were synthesized and duplexes with the complementary DNA strand were applied to structural and thermodynamic analyses. The structural study by CD spectra showed that the structures of both modified “l/d-d” duplexes were the typical B-form. This result suggests that the global structure of DNa was not collapsed by the introduction of an l-DNA. Thermodynamic parameters (ΔH°, ΔS°, and ΔG°37) of the duplex formation, determined by UV melting experiments, indicated that the both duplexes were destabilized at about 2.5 to 3.0 kcal mol–1 by the introduced L-dA, mainly due to an unfavorable enthalpic effect. In conjunction with information by other researchers, these results suggest that the L-D Na affect on the duplex structure and the stability vary locally; thus, the thermodynamic stability of modified l/d-d duplexes should be predictable by the nearest-neighbor thermodynamic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hélène and J. J. Toulme, Biochim. Biophys. Acta, 1990, 1049, 99.

    Article  PubMed  Google Scholar 

  2. C. M. Chen, Q. Z. Ye, Z. M. Zhu, B. L. Wanner, and C. T. Walsh, J. Biol. Chem., 1990, 265, 4461.

    Article  CAS  PubMed  Google Scholar 

  3. F. Eckstein, Annu. Rev. Biochem., 1985, 54, 367.

    Article  CAS  PubMed  Google Scholar 

  4. P. Furrer, T. M. Billeci, A. Donati, C. Kojima, B. Karwowski, A. Sierzchala, W. Stec, and T. L. James, J. Mol. Biol., 1999, 285, 1609.

    Article  CAS  PubMed  Google Scholar 

  5. K. Mori, C. Boiziau, C. Cazenave, M. Matsukura, C. Subasinghe, J. S. Cohen, S. Broder, J. J. Toulme, and C. A. Stein, Nucleic Acids Res., 1989, 17, 8207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. W. S. Marshall and M. H. Caruthers, Science, 1993, 259, 1564.

    Article  CAS  PubMed  Google Scholar 

  7. C. McGuigan, S. M. Tollerfield, and P. A. Riley, Nucleic Acids Res., 1989, 17, 6065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. B. Froehler, P. Ng, and M. Matteucci, Nucleic Acids Res., 1988, 16, 4831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. H. Ozaki, M. Kitamura, K. Yamana, and T. Shimidzu, Nucleic Acids Symp. Ser., 1989, 21, 35.

    CAS  Google Scholar 

  10. R. O. Dempcy, K. A. Browne, and T. C. Bruice, Proc. Natl. Acad. Sci. USA, 1995, 92, 6097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P. E. Nielsen, M. Egholm, R. H. Berg, and O. Buchardt, Science, 1991, 254, 1497.

    Article  CAS  PubMed  Google Scholar 

  12. N. Sugimoto, N. Satoh, K. Yasuda, and S. Nakano, Biochemistry, 2001, 40, 8444.

    Article  CAS  PubMed  Google Scholar 

  13. D. A. Weidner, B. C. Valdez, D. Henning, S. Greenberg, and H. Busch, FEBS Lett., 1995, 366, 146.

    Article  CAS  PubMed  Google Scholar 

  14. I. Tazawa, S. Tazawa, L. M. Stempel, and P. O. Ts’o, Biochemistry, 1970, 9, 3499.

    Article  CAS  PubMed  Google Scholar 

  15. U. Asseline, J. F. Hau, S. Czernecki, T. Le Diguarher, M. C. Perlat, J. M. Valery, and N. T. Thuong, Nucleic Acids Res., 1991, 19, 4067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. K. P. Williams, X. H. Liu, T. N. Schumacher, H. Y. Lin, D. A. Ausiello, P. S. Kim, and D. P. Bartel, Proc. Natl. Acad. Sci. USA, 1997, 94, 11285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Fujimori and K. Shudo, J. Am. Chem. Soc, 1990, 112, 7436.

    Article  CAS  Google Scholar 

  18. G. W. Ashley, J. Am. Chem. Soc, 1992, 114, 9731.

    Article  CAS  Google Scholar 

  19. A. Garbesi, M. L. Capobianco, F. P. Colonna, L. Tondelli, F. Arcamone, G. Manzini, C. W. Hilbers, J. M. Aelen, and M. J. Blommers, Nucleic Acids Res., 1993, 21, 4159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. J. Damha, P. A. Giannaris, P. Marfey, and L. S. Reid, Tetrahedron Lett., 1991, 32, 2573.

    Article  CAS  Google Scholar 

  21. M. J. Damha, P. A. Giannaris, and P. Marfey, Biochemistry, 1994, 33, 7877.

    Article  CAS  PubMed  Google Scholar 

  22. J. Kawakami, K. Tsujita, and N. Sugimoto, Nucleic Acids Symp. Ser., 1998, 39, 55.

    CAS  Google Scholar 

  23. M. J. Blommers, L. Tondelli, and A. Garbesi, Biochemistry, 1994, 33, 7886.

    Article  CAS  PubMed  Google Scholar 

  24. H. Urata, Y. Ueda, H. Suhara, E. Nishioka, and M. Akagi, J. Am. Chem. Soc, 1993, 115, 9852.

    Article  CAS  Google Scholar 

  25. H. T. Allawi and J. SantaLucia Jr., Biochemistry, 1998, 37, 9435.

    Article  CAS  PubMed  Google Scholar 

  26. N. Peyret, P. A. Seneviratne, H. T. Allawi, and J. SantaLucia Jr., Biochemistry, 1999, 38, 3468.

    Article  CAS  PubMed  Google Scholar 

  27. H. Urata and M. Akagi, Tetrahedron Lett., 1996, 37, 5551.

    Article  CAS  Google Scholar 

  28. H. Urata, H. Shimizu, H. Hiroaki, D. Kohda, and M. Akagi, Biochem. Biophys. Res. Commun., 2003, 309, 79.

    Article  CAS  PubMed  Google Scholar 

  29. Detailed procedures for synthesis of β-L-2'-deoxyadenosine phosphoramidite is available as supplemental information at http://fiber.konan-u.ac.jp/support/Anal_Sci/supplement.pdf.

  30. R. Kierzek, M. H. Caruthers, C. E. Longfellow, D. Swinton, D. H. Turner, and S. M. Freier, Biochemistry, 1986, 25, 7840.

    Article  CAS  PubMed  Google Scholar 

  31. N. Sugimoto, R. Kierzek, S. M. Freier, and D. H. Turner, Biochemistry, 1986, 25, 5755.

    Article  CAS  PubMed  Google Scholar 

  32. E. G. Richard, in “Handbook of Biochemistry and Molecular Biology: Nucleic Acids”, ed. G. D. Fasman, 3rd ed., 1975, Vol. 1, CRC Press, Cleveland, OH, 596–603.

  33. M. Petersheim and D. H. Turner, Biochemistry, 1983, 22, 256.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Mizukami, H. Nakatsuji, M. Hata, M. Sasaki, and N. Sugimoto, Chem. Lett., 1991, 2119.

    Google Scholar 

  35. C. E. Longfellow, R. Kierzek, and D. H. Turner, Biochemistry, 1990, 29, 278.

    Article  CAS  PubMed  Google Scholar 

  36. V. I. Ivanov, L. E. Minchenkova, A. K. Schyolkina, and A. I. Poletayev, Biopolymers, 1973, 12, 89.

    Article  CAS  PubMed  Google Scholar 

  37. C. A. van Boeckel, G. M. Visser, R. A. Hegstrom, and J. H. van Boom, J. Mol. Evol, 1987, 25, 100.

    Article  PubMed  Google Scholar 

  38. N. Tomioka and A. Itai, Biopolymers, 1992, 32, 1593.

    Article  CAS  PubMed  Google Scholar 

  39. M. Kieninger and S. Suhai, Anticancer Drag Des., 1995, 10, 189.

    CAS  Google Scholar 

  40. N. Sugimoto, S. Nakano, M. Yoneyama, and K. Honda, Nucleic Acids Res., 1996, 24, 4501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. SantaLucia Jr., H. T. Allawi, and P. A. Sneviratne, Biochemistry, 1996, 35, 3555.

    Article  CAS  PubMed  Google Scholar 

  42. S. M. Freier, N. Sugimoto, A. Sinclair, D. Alkema, T. Neilson, R. Kierzek, M. H. Caruthers, and D. H. Turner, Biochemistry, 1986, 25, 3214.

    Article  CAS  PubMed  Google Scholar 

  43. N. Sugimoto, S. Nakano, M. Katoh, A. Matsumura, H. Nakamuta, T. Ohmichi, M. Yoneyama, and M. Sasaki, Biochemistry, 1995, 34, 11211.

    Article  CAS  PubMed  Google Scholar 

  44. H. T. Allawi and J. SantaLucia Jr., Biochemistry, 1997, 36, 10581.

    Article  CAS  PubMed  Google Scholar 

  45. M. Wu, J. A. McDowell, and D. H. Turner, Biochemistry, 1995, 34, 3204.

    Article  CAS  PubMed  Google Scholar 

  46. M. J. Doktycz, T. M. Paner, M. Amaratunga, and A. S. Benight, Biopolymers, 1990, 30, 829.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Sugimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawakami, J., Tsujita, K. & Sugimoto, N. Thermodynamic Analysis of Duplex Formation of the Heterochiral DNA with l-Deoxyadenosine. ANAL. SCI. 21, 77–82 (2005). https://doi.org/10.2116/analsci.21.77

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21.77

Navigation