Skip to main content
Log in

Microfluidic Devices for Monitoring the Root Morphology of Arabidopsis Thaliana in situ

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Plant roots play critical roles in absorbing nutrients for the growth and development of plants as well as adapting different environments. Currently, there is no satisfactory way to track dynamic information when studying roots at the high temporal and spatial resolution. Herein, a simple microfluidic device with crossed microchannels was utilized for a microscopic investigation of Arabidopsis thaliana roots in situ. Our experimental results showed that the microfluidic system combined with a microscope could be conveniently utilized for the quantification of primary roots and root hairs with a change of micrometers within a time of minutes. Using the same approach, the influences of high salinity stress could also be investigated on different parts of roots, including the root cap, meristematic zone, elongation zone, mature zone, and root hairs. More importantly, the growth of roots and root hairs could be quantified and compared in a solution of abscisic acid and indole-3-acetic acid, respectively. Our study suggested that the microfluidic system could become a powerful tool for the quantitative investigation of Arabidopsis thaliana roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bhardwaj, A. Medici, A. Gojon, B. Lacombe, and N. Tuteja, Plant Signaling Behav., 2015, 10, e1049791.

    Article  Google Scholar 

  2. C. D. Canto, M. Simonin, E. King, L. Moulin, M. J. Bennett, G. Castrillo, and L. Laplaze, Plant J., 2020, 102, 951.

    Article  Google Scholar 

  3. K. Vissenberg, N. Claeijs, D. Balcerowicz, and S. Schoenaers, J. Exp. Bot., 2020, 71, 2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. T. Prangemeier, F. X. Lehr, R. M. Schoeman, and H. Koeppl, Curr. Opin. Biotechnol., 2020, 63, 167.

    Article  CAS  PubMed  Google Scholar 

  5. A. Sanati Nezhad, Lab Chip, 2014, 14, 3262.

    Article  CAS  PubMed  Google Scholar 

  6. W. Busch, B. T. Moore, B. Martsberger, D. L. Mace, R. W. Twigg, J. Jung, I. Pruteanu-Malinici, S. J. Kennedy, G. K. Fricke, R. L. Clark, U. Ohler, and P. N. Benfey, Nat. Methods, 2012, 9, 1101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. G. Grossmann, W. J. Guo, D. W. Ehrhardt, W. B. Frommer, R. V. Sit, S. R. Quake, and M. Meier, Plant Cell, 2011, 23, 4234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Meier, E. M. Lucchetta, and R. F. Ismagilov, Lab Chip, 2010, 10, 2147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. F. Noirot-Gros, S. V. Shinde, C. Akins, J. L. Johnson, S. Zerbs, R. Wilton, K. M. Kemner, P. Noirot, and G. Babnigg, Front. Plant Sci., 2020, 11, 408.

    Article  PubMed  PubMed Central  Google Scholar 

  10. P. Kim, K. W. Kwon, M. C. Park, S. H. Lee, S. M. Kim. and K. Y. Suh, Biochip J., 2008, 2, 1.

    Google Scholar 

  11. M. Shibata and K. Sugimoto, J. Plant Res., 2019, 132, 301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. W. J. Liang, X. L. Ma, P. Wan, and L. Y. Liu, Biochem. Biophys. Res. Commun., 2018, 495, 286.

    Article  CAS  PubMed  Google Scholar 

  13. Y. Q. Yang and Y. Guo, J. Integr. Plant Biol., 2018, 60, 796.

    Article  CAS  PubMed  Google Scholar 

  14. L. Duan, J. Sebastian, and J. R. Dinneny, “Plant Cell Expansion: Methods and Protocols”, ed. J. M. Estevez, 2015, Humana Press.

  15. S. Shabala, H. H. Wu, and J. Bose, Plant Sci., 2015, 241, 109.

    Article  CAS  PubMed  Google Scholar 

  16. D. Olatunji, D. Geelen, and I. Verstraeten, Int. J. Mol. Sci., 2017, 18.

    Google Scholar 

  17. L. R. Sun, Y. B. Wang, S. B. He, and F. S. Hao, Plant Signaling Behav., 2018, 13, e1500069.

    Article  Google Scholar 

  18. B. Rymen, A. Kawamura, S. Schafer, C. Breuer, A. Iwase, M. Shibata, M. Ikeda, N. Mitsuda, C. Koncz, M. Ohme-Takagi, M. Matsui, and K. Sugimoto, Plant Physiol., 2017, 173, 1750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. R. J. Pitts, A. Cernac, and M. Estelle, Plant J., 1998, 16, 553.

    Article  CAS  PubMed  Google Scholar 

  20. K. Okada and Y. Shimura, Science, 1990, 250, 274.

    Article  CAS  PubMed  Google Scholar 

  21. M. Fendrych, M. Akhmanova, J. Merrin,M. Glanc, S. Hagihara, K. Takahashi, N. Uchida, K.U. Torii, and J. Friml, Nat. Plants, 2018, 4, 453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate financial support from the National Natural Science Foundation of China (Nos. 31770399, 21375066, and 31400315), the Natural Science Foundation of Jiangsu Province (No. BK20130389), Qing Lan Project of Jiangsu Province, Six talent peaks project in Jiangsu Province (No. SWYY-061), and science and technology innovation project of Jiangsu Province (No. KYCX17-1908).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Sun or Ning Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Liu, L., Lin, X. et al. Microfluidic Devices for Monitoring the Root Morphology of Arabidopsis Thaliana in situ. ANAL. SCI. 37, 605–611 (2021). https://doi.org/10.2116/analsci.20P281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P281

Keywords

Navigation