Skip to main content
Log in

Nanocellulose Films to Improve the Performance of Distance-based Glucose Detection in Paper-based Microfluidic Devices

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We report on a simple, cost-effective, instrument-free, and portable distance-based paper device coupled with NFs for the determination of glucose. The analysis reaction is based upon the oxidative etching reaction of silver nanoparticles (AgNPs) in the presence of H2O2 that is produced from glucose after a glucose oxidase (GOx) catalytic reaction leading to a morphological transformation of AgNPs. A color band length of AgNPs is coated on to a detection channel and then etched by H2O2, and these were changed from a purple color to colorless as a correlate of the glucose concentration. To improve the performance of the enzyme immobilization, NFs, which are biocompatible without compromising their structure and biological activity, were then placed onto the sample zone. The naked-eye detection limit was 0.1 mM for 40 min of analysis time. The recoveries of glucose spiked in the artificial urine samples and control urine samples were then verified by our device and were in the acceptable range of 96–100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Minokoshi, C.R. Kahn, B.B. Kahn, J. Biol. Chem., 2003, 278, 33609.

    Article  CAS  PubMed  Google Scholar 

  2. A. Basu, R. Basu, P. Shah, A. Vella, C.M. Johnson, M. Jensen, K.S. Nair, W.F. Schwenk, R.A. Rizza, Diabetes, 2001, 50, 1351.

    Article  CAS  PubMed  Google Scholar 

  3. A. Karimi, S.W. Husain, M. Hosseini, P.A. Azar, M.R. Ganjali, Sens. Actuators, B, 2018, 277, 90.

    Article  Google Scholar 

  4. J.H. Lee, B.C.N. Nguyen, E. Ko, J.H. Kim, G.H. Seong, Sens. Actuators, B, 2016, 224, 789.

    Article  CAS  Google Scholar 

  5. B. Sherino, S. Mohamad, S.N.A. Halim, N.S.A. Manan, Sens. Actuators, B, 2018, 254, 1148.

    Article  CAS  Google Scholar 

  6. X. Bi, X. Du, J. Jiang, X. Huang, Anal. Chem., 2015, 87, 2016.

    Article  CAS  PubMed  Google Scholar 

  7. L. Zhang, X. Hai, C. Xia, X.W. Chen, J.H. Wang, Sens. Actuators, B, 2017, 248, 374.

    Article  CAS  Google Scholar 

  8. L.G. Zamfir, L. Rotariu, V.E. Marinescu, X.T. Simelane, P.G.L. Baker, E.I. Iwuoh, C. Bala, Sens. Actuators, B, 2016, 226, 525.

    Article  CAS  Google Scholar 

  9. W. Liu, D. Ding, Y. Wang, L. Mao, R. Liang, P. Zou, X. Wang, Q. Zhao, H. Rao, Sens. Actuators, B, 2018, 265, 310.

    Article  CAS  Google Scholar 

  10. P. Worramongkona, K. Seeda, P. Phansomboon, N. Ratnarathorn, O. Chailapakul, W. Dungchai, Anal. Sci., 2018, 34, 103.

    Article  CAS  PubMed  Google Scholar 

  11. B. Davaji and C.H. Lee, Biosens. Bioelectron., 2014, 59, 120.

    Article  PubMed  Google Scholar 

  12. H. Torul, H. Çiftçi, D. Çetin, Z. Suludere, I.H. Boyaci, T. Tamer, Anal. Bioanal. Chem., 2015, 407, 8243.

    Article  CAS  PubMed  Google Scholar 

  13. U.A. Chen, F.J. Tsai, U.T. Zeng, J.C. Wang, C.P. Hong, P.H. Huang, H.L. Chuang, S.Y. Lin, C.T. Chan, Y.C. Ko, Y.C. Chou, T.L. Lin, G.H. Lee, M.L. Ho, J. Chin. Chem. Soc., 2016, 63, 424.

    Article  CAS  Google Scholar 

  14. G.M. Durân, T.E. Benavidez, A. Rîos, C.D. Garcia, Microchim. Acta, 2016, 783, 611.

    Article  Google Scholar 

  15. T.C. Colletes, P.T. Garcia, R.B. Campanha, P.V. Abdelnur, W. Romao, W.K.T. Coltro, B.G. Vaz, Analyst, 2016, 747, 1707.

    Article  Google Scholar 

  16. X.X. Yang, O. Forouzan, T.P. Brown, S.S. Shevkoplyas, Lab Chip, 2012, 72, 274.

    Article  Google Scholar 

  17. L.F. Cai, Y. Wang, Y.Y. Wu, C.X. Xu, M.H. Zhong, H.Y. Lai, J.S. Huang, Analyst, 2014, 739, 4593.

    Article  Google Scholar 

  18. Z.A. Li, L.Y. Hou, W.Y. Zhang, L. Zhu, Anal. Methods., 2014, 6, 878.

    Article  CAS  Google Scholar 

  19. P.T. Garcia, T.M.G. Cardoso, C.D. Garcia, E. Carrilho, W.K.T. Coltro, RSCAdv., 2014, 4, 37637.

    Google Scholar 

  20. S. Mohammadi, M. Maeki, R.M. Mohamadi, A. Ishida, H. Tani, M. Tokeshi, Analyst, 2015, 740, 6493.

    Article  Google Scholar 

  21. X. Chen, J. Chen, F.B. Wang, X. Xiang, M. Luo, X.H. Ji, Z.K. He, Biosens. Bioelectron., 2012, 35, 363.

    Article  CAS  PubMed  Google Scholar 

  22. E.F.M. Gabriel, P.T. Garcia, T.M.G. Cardoso, F.M. Lopes, F.T. Martins, W.K.T. Coltro, Analyst, 2016, 747, 4749.

    Article  Google Scholar 

  23. M. Zhou, M.H. Yang, F.M. Zhou, Biosens. Bioelectron., 2014, 55, 39.

    Article  CAS  PubMed  Google Scholar 

  24. E. Evans, E.F.M. Gabriel, T.E. Benavidez, W.K.T. Coltro, C.D. Garcia, Analyst, 2014, 739, 5560.

    Article  Google Scholar 

  25. F. Figueredo, P.T. Garcia, E. Corton, W.K.T. Coltro, ACS Appl. Mater. Interfaces, 2016, 8, 11.

    Article  CAS  PubMed  Google Scholar 

  26. L. Deng, C.G. Chen, C.Z. Zhu, S.J. Dong, H.M. Lu, Biosens. Bioelectron., 2014, 52, 324.

    Article  CAS  PubMed  Google Scholar 

  27. D.M. Cate, W. Dungchai, J.C. Cunningham, J. Volckens, C.S. Henry, Lab Chip, 2013, 73, 2397.

    Article  Google Scholar 

  28. X.F. Wei, T. Tian, S.S. Jia, Z. Zhu, Y.L. Ma, J.J. Sun, Z.Y. Lin, C.J. Yang, Anal. Chem., 2016, 88, 2345.

    Article  CAS  PubMed  Google Scholar 

  29. C. Chen, L. Zhao, H. Zhang, X. Shen, Y. Zhu, H. Chen, Anal. Chem., 2019, 97, 5169.

    Article  Google Scholar 

  30. T. Parnklang, C. Lertvachirapaiboon, P. Pienpinijtham, K. Wongravee, C. Thammacharoen, S. Ekgasit, RSC Adv., 2013, 3, 12886.

    Article  CAS  Google Scholar 

  31. A. Sriruangrungkamol, N. Wongyao and W. Chonkaew, in Proceedings of the Seventh International Conference on Bio-based Polymers (ICBP2019), 2019, Thailand Science Park Convention Center and Chaloem Rajakumari 60 Building (CHAMCHURI 10), Chulalongkorn University.

  32. Z. Chen, C. Zhang, Q. Wu, K. Li, L. Tan, Sens. Actuators, B, 2015, 220, 314.

    Article  CAS  Google Scholar 

  33. Q. Zhang, C.M. Cobley, J. Zeng, L.P. Wen, J. Chen, Y. Xia, J. Phys. Chem. C, 2010, 774, 6396.

    Article  Google Scholar 

  34. D.M. Cate, J.A. Adkins, J. Mettakoonpitak, C.S. Henry, Anal. Chem., 2015, 87, 19.

    Article  CAS  PubMed  Google Scholar 

  35. G.H. Seong, J. Heo, R.M. Crooks, Anal. Chem., 2003, 75, 3161.

    Article  CAS  PubMed  Google Scholar 

  36. M.P.C. Bui, C.A. Li, K.N. Han, J. Choo, E.K. Lee, G.H. Seong, Anal. Chem., 2011, 83, 1603.

    Article  CAS  PubMed  Google Scholar 

  37. M.S. Art, S.D. Noblitt, A.T. Krummel, C.S. Henry, Anal. Chim. Acta, 2018, 7027, 95.

    Google Scholar 

  38. M.A.S. Azizi Samir, F. Alloin, A. Dufresne, Biomacromolecules, 2005, 6, 612.

    Article  PubMed  Google Scholar 

  39. S. Libertino, V. Aiello, A. Scandurra, M. Renis, F. Sinatra, Sensors, 2008, 8, 5637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chonkaew Wunpen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prapaporn, S., Arisara, S., Wunpen, C. et al. Nanocellulose Films to Improve the Performance of Distance-based Glucose Detection in Paper-based Microfluidic Devices. ANAL. SCI. 36, 1447–1451 (2020). https://doi.org/10.2116/analsci.20P168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P168

Keywords

Navigation