Skip to main content
Log in

Extraction Ability of 4-Benzoyl-3-phenyl-5-isoxazolone towards 4f-Ions into Ionic and Molecular Media

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The distribution constants of 4-benzoyl-3-phenyl-5-isoxazolone (HPBI) and deprotonated one (PBI–) between hydrophobic ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C1C4im][Tf2N]) and aqueous phases were determined, together with the acid-dissociation constant of HPBI. The solvent extraction of three selected lanthanoid ions (La3+, Eu3+, and Lu3+) with HPBI from aqueous nitrate phase into [C1C4im][Tf2N] has been investigated. Application of the ionic liquid as the extracting phase greatly enhanced the extraction performance of HPBI for lanthanoid ions compared with that in the chloroform system. A slope analysis was conducted in order to compare the results of the solution 4f-ion coordination chemistry in ionic and molecular media. The composition of the extracted species was established to be anionic tetrakis entities, Ln(PBI)4–, for light, middle, and heavy lanthanoid ions in an ionic environment (Ln denotes lanthanoid ion). Nevertheless, the typical neutral chelate lanthanoid complexes of the type Ln(PBI)3 have been detected when the conventional molecular diluent chloroform was applied as an organic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Application of Ionic Liquids on Rare Earth Green Separation and Utilization”, ed. J. Chen, 2016, Springer.

    Google Scholar 

  2. F. Kubota, Y. Baba, and M. Goto, Solvent Extr. Res. Dev., Jpn., 2012, 19, 17.

    Article  CAS  Google Scholar 

  3. P. Mohapatra, Dalton Trans., 2017, 46, 1730.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Liu, J. Chen, and D. Li, Sep. Sci. Technol., 2012, 47, 223.

    Article  CAS  Google Scholar 

  5. M. Atanassova, ACS Sustainable Chem. Eng., 2016, 4, 2366.

    Article  Google Scholar 

  6. M. Jensen, M. Borkowski, I. Laszak, J. Beitz, P. Rickert, and M. Dietz, Sep. Sci. Technol., 2012, 47, 233.

    Article  CAS  Google Scholar 

  7. N. Hirayama, H. Okamura, K. Kidani, and H. Imura, Anal. Sci., 2008, 24, 697.

    Article  CAS  PubMed  Google Scholar 

  8. C. Janssen, N. Macias-Ruvalcaba, M. Aguilar-Martinez, and M. Kobrak, Int. Rev. Phys. Chem., 2015, 34, 591.

    Article  CAS  Google Scholar 

  9. M. Jensen, J. Neuefeind, J. Beitz, S. Skanthamukar, and L. Soderholm, J. Am. Chem. Soc., 2003, 125, 15466.

    Article  CAS  PubMed  Google Scholar 

  10. K. Shimojo, H. Okamura, N. Hirayama, S. Umetani, H. Imura, and H. Naganawa, Dalton Trans., 2009, 4850.

    Google Scholar 

  11. H. Okamura, A. Ikeda-Ohno, T. Saito, N. Aoyagi, H. Naganawa, N. Hirayama, S. Umetani, H. Imura, and K. Shimojo, Anal. Chem., 2012, 84, 9332.

    Article  CAS  PubMed  Google Scholar 

  12. K. Shimojo, K. Kurahashi, and H. Naganawa, Dalton Trans., 2008, 5083.

    Google Scholar 

  13. M. Atanassova and V. Kurteva, Sep. Purif. Technol., 2017, 183, 226.

    Article  CAS  Google Scholar 

  14. K. Nakashima, F. Kubota, T. Maruyama, and M. Goto, Anal. Sci., 2003, 19, 1097.

    Article  CAS  PubMed  Google Scholar 

  15. H. Okamura, N. Hirayama, K. Morita, K. Shimojo, H. Naganawa, and H. Imura, Anal. Sci., 2010, 26, 607.

    Article  CAS  PubMed  Google Scholar 

  16. M. Atanassova, V. Kurteva, L. Lubenov, and I. Billard, Sep. Sci. Technol., 2016, 51, 290.

    Article  CAS  Google Scholar 

  17. H. Okamura, H. Sakae, K. Kidani, N. Hirayama, N. Aoyagi, T. Saito, K. Shimojo, H. Naganawa, and H. Imura, Polyhedron, 2012, 31, 748.

    Article  CAS  Google Scholar 

  18. H. Okamura, N. Aoyagi, K. Shimojo, H. Naganawa, and H. Imura, RSC Adv., 2017, 7, 7610.

    Article  CAS  Google Scholar 

  19. K. Shimojo and M. Goto, Anal. Chem., 2004, 76, 5039.

    Article  CAS  PubMed  Google Scholar 

  20. K. Shimojo and M. Goto, Chem. Lett., 2004, 33, 320.

    Article  CAS  Google Scholar 

  21. M. Atanassova, V. Kurteva, L. Lubenov, and I. Billard, RSC Adv., 2014, 4, 38820.

    Article  CAS  Google Scholar 

  22. M. Atanassova, V. Kurteva, L. Lubenov, S. Varbanov, and I. Billard, New J. Chem., 2015, 39, 7932.

    Article  CAS  Google Scholar 

  23. M. Petrova and V. Kurteva, J. Chem. Eng. Data, 2014, 59, 1295.

    Article  CAS  Google Scholar 

  24. M. Atanassova, V. Lachkova, N. Vassilev, S. Varbanov, and I. Dukov, Polyhedron, 2010, 29, 655.

    Article  CAS  Google Scholar 

  25. M. Petrova, V. Lachkova, N. Vassilev, and S. Varbanov, Ind. Eng. Chem. Res., 2010, 49, 6189.

    Article  CAS  Google Scholar 

  26. M. Atanassova and I. Dukov, Sep. Purif. Technol., 2010, 74, 300.

    Article  CAS  Google Scholar 

  27. M. Atanassova, Solvent Extr. Ion Exch., 2009, 27, 159.

    Article  CAS  Google Scholar 

  28. A. Jyothi and G. Rao, Bull. Chem. Soc. Jpn., 1988, 61, 4497.

    Article  CAS  Google Scholar 

  29. P. Pavithran and M. L. P. Reddy, Radiochim. Acta, 2004, 92, 31.

    Article  CAS  Google Scholar 

  30. P. Pavithran and M. L. P. Reddy, Radiochim. Acta, 2003, 91, 163.

    Article  CAS  Google Scholar 

  31. P. Mohapatra and V. Manchanda, Radiochim. Acta, 2003, 91, 705.

    Article  CAS  Google Scholar 

  32. S. Banerjee, P. Mohapatra, A. Bhattacharya, S. Basu, and V. Manchanda, Radiochim. Acta, 2004, 92, 95.

    Article  CAS  Google Scholar 

  33. K. Shimojo, N. Kamiya, F. Tani, H. Naganawa, Y. Naruta, and M. Goto, Anal. Chem., 2006, 78, 7735.

    Article  CAS  PubMed  Google Scholar 

  34. K. Kidani and H. Imura, Talanta, 2010, 83, 299.

    Article  CAS  PubMed  Google Scholar 

  35. M. G. Freire, P. J. Carvalho, R. L. Gardas, I. M. Marrucho, L. M. N. B. F. Santos, and J. A. P. Coutinho, J. Phys. Chem. B, 2008, 112, 1604.

    Article  CAS  PubMed  Google Scholar 

  36. M. Bouby, I. Billard, G. Duplâtre, J.-P. Simonin, O. Bernard, J.-P. Brunette, and G. Goetz-Grandmont, Phys. Chem. Chem. Phys., 1999, 1, 3765.

    Article  CAS  Google Scholar 

  37. T. Sekine, Y. Hasegawa, and N. Ihara, J. Inorg. Nucl. Chem., 1973, 35, 3968.

    Article  CAS  Google Scholar 

  38. M. Atanassova, V. Kurteva, and I. Billard, Anal. Sci., 2015, 31, 917.

    Article  CAS  PubMed  Google Scholar 

  39. V. Jordanov, M. Atanassova, and I. Dukov, Sep. Sci. Technol., 2002, 37, 3349.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Matsumae International Foundation for the research fellowship grant 17G03. This work was financially supported by JSPS KAKENHI Grant Number 16K00619.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Atanassova or Kojiro Shimojo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanassova, M., Okamura, H., Eguchi, A. et al. Extraction Ability of 4-Benzoyl-3-phenyl-5-isoxazolone towards 4f-Ions into Ionic and Molecular Media. ANAL. SCI. 34, 973–978 (2018). https://doi.org/10.2116/analsci.18P166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P166

Keywords

Navigation