Manufacturing Technology 2021, 21(1):76-82 | DOI: 10.21062/mft.2021.009

Composite laser claddings for corrosion protection of outer surfaces of storage containers for spent nuclear fuel in underground repositories

Pavla Bartoň Klufová1, Antonín Kříž1, Duliškovič Josef1, Marek Vostřák2
1 Faculty of Mechanical Engineering, University of West Bohemia. Univerzitní 2732/8, 306 14 Pilsen. Czech Republic
2 New Technologies – Research Center, University of West Bohemia. Univerzitní 2732/8, 306 14 Pilsen. Czech Republic

The present contribution examines the structures of and corrosion processes in copper-basalt composite laser claddings on a steel substrate. The cladding material was a laboratory mixture of the following components: Oerlikon METCO 55 (Cu > 99.9 %) + basalt dust. In this investigation, metallographic structures of copper-basalt composite laser claddings were studied using optical and scanning electron microscopy. The adhesion of the claddings to the substrate was testing using the non-standardized Mercedes test. A potentiodynamic corrosion test in artificial mine water was performed on a specimen of the composite laser cladding. The test results were compared against those for a reference high-purity copper standard and AISI 304 steel. The findings were interpreted in terms of the potential of using copper-basalt composite laser claddings as corrosion protection coatings on steel components in nuclear power generation.

Keywords: laser cladding; copper; basalt; corrosion test; storage container
Grants and funding:

Grant of the University of West Bohemia – Motivation Scheme POSTDOC 2020.

Received: September 30, 2020; Revised: January 11, 2021; Accepted: January 14, 2021; Prepublished online: February 10, 2021; Published: February 24, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Bartoň Klufová P, Kříž A, Josef D, Vostřák M. Composite laser claddings for corrosion protection of outer surfaces of storage containers for spent nuclear fuel in underground repositories. Manufacturing Technology. 2021;21(1):76-82. doi: 10.21062/mft.2021.009.
Download citation

References

  1. Správa úložišť radioaktivních odpadů (Radioactive Waste Repository Authority). (2019). In Hlubinné úložiš-tě.
  2. https://www.surao.cz/wp-content/uploads/2019/09/surao_brozuraHU_online.pdf [accessed on 30 June 2020]
  3. Správa úložišť radioaktivních odpadů (Radioactive Waste Repository Authority). (2019). In Podzemní vý-zkumné pracoviště Bukov.
  4. https://www.surao.cz/wp-content/uploads/2019/09/surao_brozura_bukov_online.pdf [accessed on 19 December 2020]
  5. KLUFOVA, P. (2018). Degradace laserem navařených austenitických vrstev. In: Dissertation thesis, University of West Bohemia
  6. HAJSMAN, J., JENICEK, S., KUCEROVA, L., RIEGER, D. (2019). Microstructure and properties of polymer composites. In: Manufacturing Technology, Vol. 19, No. 6, pp. 941 - 946. Go to original source...
  7. Oerlikon Metco. (2020). Datasheet - Metco 55, https://www.oerlikon.com [accessed on 28 June 2020]
  8. RONCHI, C., SHEINDLIN, M. (2001). Melting point of MgO. In: Journal of Applied Physics, Vol. 90, No. 7, pp. 3325 - 3331. American Institute of Physics. USA. ISSN 0021-8979 Go to original source...
  9. KRACEK, F. C. (1963). Melting and transformation temperatures of mineral and allied substances. In: Geo-logical Survey bulletin 1144-D. United states government printing office. Washington.
  10. Alfa Aesar. (2020). Datasheet - Calcium aluminium oxide, https://www.fishersci.co.uk [accessed on 28 June 2020]
  11. KUNO, H. (1966). Review of pyroxene relation in terrestrial rocks in the light of recent experimental works, In: Mineralogical journal, Vol. 5, No. 1, p. 22 - 43. Japan Association of Mineralogical Sciences. Japan. ISSN 1881-4174 Go to original source...
  12. MISRA, M. L. (1944). Sillimanit in India. In: Transactions of the Indian Ceramic Society, Volume 3, p. 65 - 69. Taylor & Francis Ltd. UK. ISSN 0371-750X Go to original source...
  13. BOYD, F. R., ENGLAND, J. L., DAVIS, B. T. C. (1964). Effect of pressure on the melting temperature and polymorphism of enstatite, MgSiO3. In: Journal of Geophysical Research, Vol. 69, Issue 10, pp. 2101 - 2109. American Geophysical Union. USA. ISSN 0148-0227 Go to original source...
  14. SCHNEIDER, H., FISCHER, R. X., SCHREUER, J. (2015). Mullite: Crystal structure and Related proper-ties, In: Journal of the American Ceramics Society, Vol. 98, No. 10, pp. 2948 - 2967. The American Ceramics So-ciety. USA. ISSN 1551-2916 Go to original source...
  15. Přehled vlastností oceli C45, https://www.bolzano.cz [accessed on 27 July 2020]
  16. DULISKOVIC, J. (2020). Testování korozní odolnosti laserových návarů na bázi měď-čedič ve specifických korozních prostředích. In: Diploma thesis. University of West Bohemia
  17. BARTON KLUFOVA, P., KRIZ, A., VOSTRAK, M. (2019). Development of Laser Clads with High Corrosion Resistance for Nuclear Power Industry. In: AIP Conference Proceedings, Vol. 2189, No. 1, pp. 020011-1 - 020011-8. American Institute of Physics Inc. USA. ISSN 0094-243X Go to original source...
  18. KALINA, T., SEDLACEK, F. (2019). Design and determination of strenght of adhesive bonded joints. In: Manufacturing Technology, Vol. 19, No. 3, pp. 409 - 413. J. E. Purkyně University in Ústí nad Labem. Czech Republic. ISSN 1213-2489 Go to original source...
  19. SOSNOVA, M. (2007). Souvislost metod hodnocení adhezivně-kohezivního chování systému tenká vrstva-substrát. In: dissertation thesis, University of West Bohemia
  20. TITTEL, J. (2019). Testování korozní odolnosti kompozitních laserem navařených materiálů s vysokým po-ločasem rozpadu. In: diploma thesis, University of West Bohemia

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.