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Summary. We propose and investigate calculation of the radiance of scattering
medium using an extension of bi-directional Monte-Carlo ray tracing with photon maps.
In the standard approach photons are collected either by an integration sphere at the end
of camera ray segment, or by a cylinder along it. We propose an extension of random
ray generation which sets several integration spheres per segment of camera ray. Their
positions and number are random. The control parameter is their mean number per seg-
ment; when it is 0, we have the standard method with single sphere while when it gets
very large we effectively obtain the integration cylinder. Although in case of multiple
spheres the noise for the same number of traced rays is higher than for integration cylin-
ders, processing of forward rays is not that expensive, so for the same time of ray tracing
the multiple spheres are advantageous. The control parameter allows to achieve minimal
noise by finding the compromise between the speed of ray tracing and the noise per given
number of rays.

1 INTRODUCTION

A powerful method of calculation of a virtual camera image is a bi-directional Monte-
Carlo ray tracing. Its basic idea is to operate trajectories that always connect light source
and camera. They are constructed by “concatenating” two halves: one is from the camera
and is obtained by the backward Monte-Carlo ray tracing (BMCRT) and another is from
light source and is obtained by the forward Monte-Carlo ray tracing (FMCRT). Then
these pieces are “merged” somehow which creates trajectory that connects light source
and camera. There are two basic approaches for merging these halves and calculate the
visible scene luminance.

The first approach supposes the unbiased bidirectional ray tracing method [1, 2],
which does not introduce an additional error of luminance estimation in the calculation
of illumination at the observation point. This approach is rather expensive to implement
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and can add a significant noise in the calculation of luminance of the caustic component
of illumination.

The second method is based on the of photon maps and introduces some bias into
the luminance estimation caused by averaging of the illumination inside the integration
sphere about the observation point. There are several variants of the method, one being
the photon map visualization [3, 4, 5, 6]. Most of these methods use a “classical” approach
based on the calculation of global illumination in the form of photon maps, which is
visualized as the luminance of secondary and caustic illumination [3, 5, 7].

An alternative approach implements the reverse calculation scheme, namely, generates
a visibility map as spheres of the illuminance integration in the direction of observation,
which are “filled” with the light photons related to the caustic and the secondary illumi-
nation [4, 6]. Here the camera ray is traced stochastically until it terminates due to some
criterion, say, after the given number of diffuse events. In each point of scattering, an
“integration sphere” is set that collects FMCRT rays. After a forward ray hits that sphere
we calculate the surface luminance for the view direction equal to the camera ray direction
before the sphere center. This luminance is then scaled by the camera ray attenuation
accumulated to this point and added to the pixel luminance, [1, 4, §].

In presence of a scattering medium this general scheme remains the same, only the
integration spheres are now distributed over the volume, not only boundaries. Technically,
the luminance integration inside the scattering medium can be performed similarly to that
at the boundaries of scene objects. That is, the luminance is added when the extinction
events of the forward ray is within the integration sphere [4]. The solution can be efficient
in case of strong scattering, for example, for high concentration of scattering particles.

An alternative approach is gathering of the luminance when the light ray intersects
the integration sphere [4]. Usually this approach provides higher calculation efficiency for
most cases of scattering media, including fog and objects with low scattering properties
of the media. In [9] the “point-point” and “point-beam” estimators are detailed and
compared.

It is important that the luminance of the medium can be subdivided into several
components: one created by the forward rays that were direct or caustic before entering
the medium, and one created by the forward rays that were diffuse before entering it.
In most cases, the convergence is faster if we do not calculate the latter component but
instead we take luminance of the surface point where the camera ray hits diffuse surface
after leaving the medium.

The integration spheres can be replaced by other integration volumes like e.g. cylinders
which essentially affects efficiency of the method. Investigations done in [9] show that
under different conditions cylinders can be advantageous over spheres or vice versa. In
this paper we present another approach of “multiple integration spheres” when there can
be several of them per ray segment. Comparing with cylinders, the noise for the same
number of rays is still higher, but processing of an FMCRT ray is considerably faster than
for cylinders and thus the noise after the same time of calculations can be reduced.
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Figure 1: Integration sphere (left) and integration cylinder (right). The red arrow is a forward ray and
the green arrow is a camera ray.

2 LUMINANCE OF TURBID MEDIUM IN BI-DIRECTIONAL MCRT

For view directions that enter a turbid medium, the observed radiance is the own
radiance of the medium plus luminance of surfaces seen through it [10], [11]:

L= /e“’e“tasc,f(—u, v)F(v, z, + ut)d*vdt + e 7" L, (1)
e —
~ ~~ - surface
medium

where x. is the point where the camera ray enters the medium, u is the view direction
(from camera), v is illumination direction, ¢ is the distance from . along the camera ray,
T is the maximal ¢ on exit from the medium, F' is irradiance inside the medium and L
is the radiance of the surface hit by the ray a. + wt, [ is the phase function and oy is
scattering of the medium and o, is its extinction.

Here and below we use the term “luminance” as an equivalent of “radiance”.

2.1 The general scheme of photon map in a turbid medium

The most straightforward variant of calculation of bi-directional MCRT in presence of
turbid medium is like this. When entering the medium, the camera ray goes until the first
extinction (absorption or scattering) event; then it terminates and an integration sphere
is set at its end which collects the forward rays, see Figure 1.

The distance t the camera ray goes till the extinction event is random and distributed
like 0ppe 7. When a forward ray hits the sphere inside medium, one calculates
Osef (—u,v)/(0erymR?) and adds it to the accumulated pixel luminance; here R is the
sphere radius. Its average of the forward ray contribution over the FMCRT ensemble is
[ osef(—u,v)F(v, 2. + tu)d’v, and averaging over the random ¢ just gives the integral
(1), see [3, 11, 12, 10, 9].

Alternatively, we can use an integration cylinder instead of sphere and a deterministic
integration along the camera ray instead of MC. When the camera ray enters the medium,
it goes straight throughout the medium domain and this is the axis of the cylinder.

The contribution of a forward ray segment which intersects the cylinder
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Figure 2: Long (left) and short (right) integration cylinder around the camera ray segments, from [9].
Opacity of shading shows point weight.

USCf(u7 v) e_O'ea:tTl _ e_o'ea:tTZ

O g™ R2 |(u-v)]

(2)

where 7y, 75 are distances between the cylinder’s origin and the two points of its intersec-
tion by the forward ray segment, [11], see Figure 1

As to the luminance of surfaces seen through the medium, it is taken as usual but for
the rays that transmitted the medium. Their fewer number accounts for attenuation in
the medium.

2.2 Shape and position of the integration volume

There can be also many other variations of this basic idea [3, 11, 12, 9]. For example, in
the above method of integration cylinder the attenuation of the FMCRT ray is simulated
with its random termination after passing the distance t. Instead, one can consider each
FMCRT segment as a semi-infinite line and account for attenuation by a deterministic
integration with weight e~%=t! along it, see Figure 2. The contribution of that “long”
segment is then

(TS(‘f(u v) e_o'ea:t(71+t1) _ e_o'ea:t(7'2+t2)
> 9 3
Oepym 12 1+ |(’LL ’ ’U)| ( )
instead of (2), see [9]. Here t; and t, are the distances between the forward segment’s
origin and the two points where it intersects the cylinder.

A more serious alteration of the method is based on the bi-directional MCRT idea
of solution of the self-consistent global illumination equation. The light field is self-
consistent, i.e. the secondary illumination is created by luminance of the surfaces and
media. So, instead of “sensing” the luminance in the first camera hit, we let the camera
ray scatter there and go further, and take luminance in the subsequent hit points. To this
end, integration spheres are set in those points.

Such a BMCRT step is equivalent to applying a conjugate operator to the light field,
see Neumann series in [8]. But to obtain a correct result, the first integration spheres
collect only direct and caustic illumination while the diffuse component is taken only in
the last one, [13].
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Figure 3: Forward ray intersects a lot of cylinders; shown is the simplest case of an orthogonal camera
and no refraction at the medium boundary when the camera rays in the medium are parallel.

This idea can be applied to a turbid medium as well. Camera ray is traced past the
first scattering event. One can either set integration spheres in all extinction points, or
one can set integration cylinders along all segments of camera rays. But again, diffuse
illumination is collected only by the last one, the rest collecting only direct and caustic.

On the one hand, this approach is advantageous because it increases the integration
volume thus “efficiency of registration” of FMCRT rays. On the other hand, voxelization
of the integration areas becomes considerably more expensive in memory. For example,
in media with scattering in a narrow forward cone and high extinction coefficient, the
camera ray may undergo even hundreds of scattering events before leaving the medium.
Correspondingly, there are hundreds of cylinders (or spheres) per pixel.

In both these versions the whole BMCRT trajectory is used for setting integration
volumes. So, if it is short, then the integration volume may be insufficient. If the trajectory
is long, the integration volume can be excessive and FMCRT rays processing is expensive.

A possible solution is to separate that. The camera ray is traced long until it leaves
the medium (and hits a diffuse surface). There it takes its luminance. Meanwhile the
integration cylinder is along the first segment in the medium only, or, if used are inte-
gration sphere, it is set in the first extinction point [8]. The FMCRT rays scattered by
diffuse surfaces are not collected by integration volumes inside the medium to avoid dou-
ble counting since camera ray leaves the medium and takes luminance of diffuse surfaces.
So inside the medium only the direct, caustic and scattered by the medium illumination
is taken [8].

This method is very advantageous for medium with strong scattering in a narrow
forward cone. In this case a thick plate of such medium is rather translucent, albeit
turbid, so one can see through it. Only the last variant simulates that vision rather
efficiently.

2.3 Multiple spheres as a compromise with cylinders

The main types of integration volumes are thus cylinders along the came ray segments
or spheres in the ends of those segments. Cylinders provide higher efficiency of “utiliza-
tion” of FMCRT rays, because they occupy large volume and it is rare that a FMCRT
misses them. On the contrary, it usually intersects a lot of cylinders. For example, if we
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imagine a parallel camera looking normally at a plate of a turbid material with not high
extinction, the number of cylinders a typical FMCRT ray intersects is about the size of
diagonal of the camera image, see Figure 3.

Figure 4: A cube with the textured back wall filled by scattered medium and illuminated by a parallel
light. Top: single integration sphere per camera ray segment. Bottom: integration cylinder per camera
ray segment. The inset in the top right corner shows the used texture (the KIAM’s logo).
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Figure 5: Several integration spheres along the camera ray segment. Left: positioning of the spheres.
Right: Camera ray propagation with sub-steps: it strides by (,, then with probability ¢ it undergoes
extinction otherwise goes the same direction

Processing of a forward ray trajectory is then very expensive. Besides calculation of
luminance for some thousand camera cylinders, one must check intersection for even many
of them because in case of a curved refractive boundary those cylinders intersect and there
are several (many!) of them per voxel. As a result the number of FMCRT rays processed
during the same time is much lower which leads to the the image noise increase.

Calculations for an example scene are shown in Figure 4. The scene is a cube of 1
m size whose back wall is Lambert with albedo 40% modulated by the texture. The
cube is oserved by a parallel camera whose view direction is normal to the back wall and
illuminated by a parallel light inclined at 45 degrees from the view direction. The box
is filled with a scattering medium with extinction coefficient 0.001  [mm™'] and Henyey-
Grenstein phase function [14] with anisotropy parameter 0.5. The images calculated
during 200 seconds for the extreme cases: single integration sphere (top) and integration
cylinder (bottom) are shown in Figure 4 and one can see how the noise is lower in case of
cylinders.

A possible compromise between spheres and cylinders is then to set several spheres
per camera ray segment instead of one, see Figure 5. Increasing their number increases
efficiency of “utilization” of forward rays, but in the meanwhile decelerates FMCRT part.
Until there are too few intersections of FMCRT rays with the integration spheres, the
deceleration effect is weak while the increase of efficiency is essential. But as their number
increases so that utilization goes to 100%, the further gain is impossible while deceleration
becomes essential.

This allows to find a reasonable compromise.

Additional spheres are set about the internal segment points, and one can either do
that deterministically, e.g. distributing them uniformly or with exponentially decreasing
density, or one can set them stochastically, choosing the distance between centers ( at
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random, see Figure 5. Here one makes a “step” of ray propagation, sets sphere, then
makes another “step” and so on until the segment ends and extinction occurs, see Figure
5.

This paper describes the stochastic method. It derives the distribution of step length,
criterion for extinction event (instead of propagation of the straight path) so that the
accumulated luminance to converge to the correct value. Also we calculate the variance
of that luminance and how it depends on the parameter that controls the (average) number
of spheres.

The calculation is done for a single camera ray i.e. image pixel, because they are
processed rather independently.

3 IMPLEMENTATION OF THE MULTIPLE INTEGRATION SPHERES

As suggested above, when tracing an camera ray we perform many “sub-steps” so
that the ray goes straight during several of them and only then an extinction (scattering
or absorption) occurs. Absorption is processed as a “Russian roulette” when the ray is
killed at random. The length of sub-step ( is random and chosen independently from the
previous step so that its density is always the same p;((). We assume a homogeneous
isotropic medium so this density is independent from the space point.

After the step length ¢ had been chosen, the ray propagates to its end and its further
destiny is decided at random. With probability ¢ there is an extinction event (scattering
or absorption is then decided at random); otherwise the next step is made retaining the
ray direction, see Figure 5.

3.1 The distribution of step length

The probability that there were n steps before extinction is therefore

P(n)=q(1—g""

(notice Y~ °, P(n) = 1).
Density of distribution of the sum of n steps (i.e. the ray path length) is

puls) = / Proa(s — Ope(C)dC, (4)

po(s) = pe(C) (5)
Probability of distance [ before extinction is
o
P()pc+ P(2)pe #pe + -+ =D P(n+1)pe *pe* pe % -+ % pe (6)
n=0

(the asterisk stands for the convolution) so its Fourier image is

_ (k)
1= (1 —q)pe(k)

qpc(k) +q(1 — q)(ﬁc(k)f 4.
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The density (6) must coincide with Oepre % where 0., is the extinction coefficient
of medium. Therefore their Fourier images also coincide which means that

A Oegt 1
pe(k) = — = ,
C( ) Ocgt + 2qk 1+zaeft/q
or
pe(C) = e (7)
Oext
a = (8)
q

Applying (4) iteratively with this p; we obtain

pn(s) = ae”¥—— (9)

3.2 FMCRT segment contribution

Consider a single FMCRT ray segment that crosses the BMCRT ray at distance s. Its
contribution is denoted C(s).
The probability that there is n-th splatting sphere at s is

(a(l —g)s)"!
CEE

Pa1(8)(1 — ¢q)" tds = ae™**

so the total contribution (sum over n =1,...) is

[e'e) 1— n
C'(S)oze*‘“ Z w(js — C(S)aefaseJra(lfq)sds _ C((]S)(Texteae“sds

n=0

Soto get the same result as in the “standard” method (i.e. for ¢ = 1) which is

C(5)0exre 7tds

it must be

C(s) = q%(s) (10)

which thus applies to both single segment and whole forward ray trajectory.
Notice the contribution of one segment of forward in the “standard” method is

% (s) = M}- (11)

Oy R2

where F is the total flux (sum over all light sources).
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3.3 Colored case

A possible solution is that we first pick at random the color channel A and then pick
ray steps according to this color channel until extinction. Then the sum of steps until
extinction has density ), Exgaye 9 ie. like for the standard method.

Now let us calculate contribution of a single FMCRT segment. As said above, with
probability

Ey,
Z,\ E\

we choose color channel \yg. Then, like in monochrome case, the step length s has expo-
nential density a),e”*** where now

a)\() = qaext,Ao
The probability that there is n-th splatting sphere at s is

(aro (1 = g)s)""

(n—1)! ds

Puo1(8)(1 — q)" tds = ay,e”*0®

so the total contribution (sum over n =1,...) is

o0

Ca(s)arge™™0* Y

n=0

(O*/)\o (1 - Q)S)

n
' ds = C’)\(S)a/\oe—a)\ose-i-a)\o(1—Q)Sd8 — O,\(S)()é)\oe_quOSdS
n:

Recalling that the above is with probability Z?J%y we obtain the net contribution

—c s
e

q Cy(s)ds
Z)\ B\ )\( )
In the “standard” method (i.e. for ¢ = 1) it is
E Oext. e_aewt,AOS
ZAO AoZeat Ao Ex(s)ds

Z,\ E

so for both single segment and multi-segment FMCRT path, the contribution is
Cx(s) = ¢6x(s)

4 CONCLUSION

We produced a method of “gathering photons” in scattering medium which uses several
integration spheres stochastically distributed over a camera ray segment. This forms a
disjoint integration volume which is a compromise between usual integration sphere (one
per segment) and integration cylinder. Changing the control parameter ¢ that determines
the mean number of spheres, we can gradually change from single integration spheres to
a cylinder (a union of a large number of spheres).
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Figure 6: A room filled by fog illuminated by point light sources and laser beam from the right bottom
corner to the top left corner. Top: single integration sphere per camera ray segment. Bottom: integration
cylinder per camera ray segment.
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When choosing the optimal control parameter of the method (or, in other cases, decid-
ing between various other integration volumes) one must realize that those that provide
lowest noise of the medium luminance for the fixed number of rays are not always really
the best. This is because, first, some advance methods with integration volumes occupy-
ing most of the medium domain seriously decelerate ray tracing. As a result, the number
of rays processed during the same time of calculations can drop so seriously that the noise
after the fixed simulation time is higher (as compared to competing methods). Second,
the own luminance of the medium is not the only component; there is also the luminance
of objects “seen through” that medium. If both are calculated from the same ray sets it
may happen that those optimal for the own luminance are bad for the luminance seen
through me medium, and vice versa.

Calculations for an example scene of a room filled with light “fog” are shown in Figure
6. The room is illuminated by several point lights sources under the conical shades and
besides there is a thin laser beam from the right bottom corner to the top left corner.
This floor is slighly specular so we can see reflections of the lamps and the laser beam
in it. The “fog” has extinction coefficient 0.0001 [mm™!'] and Henyey-Grenstein phase
function [14] with anisotropy parameter 0.5. The images calculated during 4000 seconds
for the extreme cases: single integration sphere (top) and integration cylinder (bottom)
are shown in Figure 6.

One can see how the noise is lower for integration cylinders and also this method
correctly reproduces the thin laser beam while for single integration sphere it is made
unnaturally thick and consists of sparse dots, and at last we do not see its reflection in
the floor. The noise see in the bottom image of Figure 6 is mainly from the diffuse surfaces
while the radiance of the fog is nearly smooth.

Analysis of noise with due account of these factors is our future work plan.
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