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Abstract: In this paper, we present a new approximate solutions of famous coupled Ramani Equation. In order to obtain the solution,
we use the semi-analytical methods differential transformmethod (DTM) and reduced form of DTM called reduced differential
transform method (RDTM). We compare the RDTM solutions withexact solution and DTM. Numerical results show clearly that
DTM and RDTM are very effective and also provide very accurate solutions. Also, one can conclude that RDTM is used easier than
DTM and converges faster than the DTM for these kind of problems.
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1 Introduction

Partial differential equations are the fundamental of applied mathematics and they are frequently used in physic,

engineering, chemistry and etc. In real life, many events can be modeled by a nonlinear partial differential equation such

as evolution equations. Particularly in nonlinear sciences, one of the important and outstanding evolution equation is the

famous coupled Ramani Equation that is presented as follow [1], [2], [3], [4].

u(x, t)xxxxxx+15u(x, t)xxu(x, t)xxx+15u(x, t)xu(x, t)xxxx+45(u(x, t)x)
2u(x, t)xx

−5u(x, t)tt +18v(x, t)x−5u(x, t)xxxt−15u(x, t)xxu(x, t)t −15u(x, t)xu(x, t)xt = 0 (1)

v(x, t)t − v(x, t)xxx−3v(x, t)xu(x, t)x−3v(x, t)u(x, t)xx = 0

In literature, a great number of researchers have studied the system (1) to obtain exact and approximate solutions.

Ablowitz and Clarkson [5], Ito [6], Zhang [7], Feng [8], Malfiet and Hereman [9] have investigated the solitons and

inverse scattering, extensions, exact traveling wave solutions and traveling solitary wave solutions of nonlinear evolution

equations respectively. Li has presented exact traveling wave solutions of six order Ramani and a coupled Ramani

equation in [10]. In [11], Nadjafikhah and Shirvani-Sh have found Lie symmetries andconservation laws of

Hirota-Ramani equation. Further, Yusufoglu and Bekir haveobtained the two exact traveling wave solutions of coupled

Ramani equation by applying tanh method as following [12].
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u(x, t) = a0+2α tanh(α(x−β t)) (2)

v(x, t) =−
4
9

β α4−
16
27

α6+
5
9

α2β 2−
5
54

β 3+

[

20
9

β α4+
16
9

α6−
5
9

α2β 2
]

tanh2(α(x−β t))

and

u(x, t) = a0−2α tan(α(x−β t))
(

|α(x−β t)|<
π
2

)

(3)

v(x, t) =−
4
9

β α4+
16
27

α6−
5
9

α2β 2−
5
54

β 3+

[

−
20
9

β α4+
16
9

α6−
5
9

α2β 2
]

tan2(α(x−β t))

wherea0, α andβ are arbitrary constants.

Recently, Wazwaz and Triki [13], Wazwaz [14], Jafarian et all [15] and Wazwaz [16] have presented the multiple soliton

solutions and approximate solution of eq. (1) respectively.

The main goal of this study is to obtain accurate, convergentand efficient approximate solution of coupled Ramani

equation (1) by using differential transform (DTM) and reduced differential transform (RDTM) methods. For the

purpose of efficiency and accuracy, our results are comparedwith exact solutions (2) and (3). Numerical considerations

are revealed that RDTM is very effective and more convergentthan DTM. In addition, RDTM can be applied easier than

DTM and ensures very accurate solutions as shown inTable (3)-(8) andFig. (1)-(4). Moreover, RDTM is also faster than

DTM in point of CPU times of computational process as seen inTable (9).

2 Basic properties of two dimensional reduced differentialtransform method (RDTM) and

differential transform method (DTM)

2.1 Two dimensional DTM

Differential transform method (DTM) is a numerical method based on Taylor expansion. This method is related to find

coefficients of series expansion of unknown function term byterm. The concept of DTM was first proposed by Zhou [17].

By, considering the literature [17]-[26], we give the following definition of two dimensional DTM;

Definition 1. Let u(x, t) be an analytic differentiable function, then two dimensional transform is follow

U(k,h) =
1

k!h!

[

∂ k+h

∂xk∂ th u(x, t)

]

x=x0,t=t0

(4)

where U(k,h) is the transformed function of u(x, t). The transformation is called T-function. Hence, the differential inverse

transform of U(k,h) is defined as

u(x, t) =
∞

∑
k=0

∞

∑
h=0

U(k,h)(x− x0)
k(t − t0)

h (5)

From the eqs. (4) and (5), it can be written

u(x, t) =
∞

∑
k=0

∞

∑
h=0

1
k!h!

[

∂ k+h

∂xk∂ thu(x, t)

]

x=x0,t=t0

(x− x0)
k(t − t0)

h (6)
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In terms of applicability, we rearrange the eq. (6) as follow

u(x, t) =
n

∑
k=0

m

∑
h=0

1
k!h!

[

∂ k+h

∂xk∂ th u(x, t)

]

x=0,t=0
xkth+Rnm(x, t) (7)

where(x0, t0) are taken as(0,0) and Rnm(x, t) = ∑∞
k=n+1 ∑∞

h=m+1U(k,h)xkth. Here, Rnm(x, t) is negligibly small terms.

Some of the transform form of functions are given asTable 1 and their proofs can be found in [17]-[ 20].

Table 1: Some two dimensional DTM operations with transformed forms.

Original functions Transformed forms
u(x, t) = v(x, t)±w(x, t) U(k,h) =V(k,h)±W(k,h)

u(x, t) = λv(x, t) U(k,h) = λV(k,h)
u(x, t) = ∂

∂xv(x, t) U(k,h) = (k+1)V(k+1,h)
u(x, t) = ∂

∂ t v(x, t) U(k,h) = (h+1)V(k,h+1)

u(x, t) = ∂ m+n

∂xm∂ tn v(x, t) U(k,h) = (k+m)!
k!

(h+n)!
h! V(k+m,h+n)

u(x, t) = v(x, t)w(x, t) U(k,h) = ∑k
r=0 ∑h

s=0V(r,h− s)W(k− r,s)
u(x, t) = v(x, t)w(x, t)q(x, t) U(k,h) = ∑k

r=0 ∑k−r
p=0∑h

s=0 ∑h−s
z=0V(r,h− s− z)W(p,s)Q(k− r − p,z)

u(x, t) = xmtn U(k,h) = δ (k−m,h−n) = δ (k−m)δ (h−n), δ (k−m) =

{

1 k= m
0 otherwise

2.2 Two dimensional RDTM

Reduced differential transform method (RDTM) which has an alternative approach of problems is presented to overcome

the demerit complex calculation, discretization, linearization or perturbations of well-known numerical and analytical

methods such as Adomian decomposition, Differential transform, Homotopy perturbation and Variational iteration.

RDTM was first introduced by Keskin and Oturanc [28]-[31]. The main advantage of RDTM is providing an analytic

approximation, in many cases exact solutions, in rapidly convergent sequence with elegantly computed terms [26]-[39].

And also, unlike the DTM, RDTM is based on the Poisson series coefficients expansion. By using the literature

[26]-[39], we present the RDTM as follow.

Definition 2. Let u(x, t) be an analytic differentiable function and assumed that it can be demonstrated as a product of

two functions which are single variable u(x, t) = h(x)g(t). By making use of differential transform properties, u(x, t) can

be written as

u(x, t) =
∞

∑
i=0

H(i)xi
∞

∑
j=0

G( j)t j =
∞

∑
k=0

Uk(x)t
k. (8)

Here Uk(x) is called t dimensional spectrum function of u(x, t). If function u(x, t) is analytic and differentiated continuously

with respect to time t and space x in the domain of interest, than

Uk(x) =
1
k!

[

∂ k

∂ tk
u(x, t)

]

t=t0

(9)
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where Uk(x) is transformed function of u(x, t). The differential inverse transform of Uk(x) is defined as

u(x, t) =
∞

∑
k=0

Uk(x)(t − t0)
k. (10)

Combining (8)-(10), we can write

u(x, t) =
∞

∑
k=0

1
k!

[

∂ k

∂ tk u(x, t)

]

t=t0

(t − t0)
k. (11)

In real applications, we use the finite series form of (11), therefore we rewrite the solution as

ũn(x, t) =
n

∑
k=0

Uk(x)t
k (12)

where n is order of approximation. Hence, the RDTM solution is given by

u(x, t) = lim
n→∞

ũn(x, t) (13)

here n is taken as sufficiently big to get convergent solution. In Table 2, transformed form of mathematical operation of

some functions are given and their proofs are shown in ref. [28], [ 29].

Table 2: Some two dimensional RDTM operations with transformed forms.

Original functions Transformed forms
u(x, t) = v(x, t)±w(x, t) Uk(x) =Vk(x)±Wk(x)

u(x, t) = λv(x, t) Uk(x) = λVk(x)
u(x, t) = ∂

∂xv(x, t) Uk(x) =
∂
∂xVk(x)

u(x, t) = ∂ r

∂ tr v(x, t) Uk(x) =
(k+r)!

k! Vk+r(x)
u(x, t) = v(x, t)w(x, t) Uk(x) = ∑k

r=0Vr(x)Wk−r(x) = ∑k
r=0Wr(x)Vk−r(x)

u(x, t) = v(x, t)w(x, t)q(x, t) Uk(x) = ∑k
r=0 ∑k−r

p=0Vr(x)Wp(x)Qk−r−p(x)

u(x, t) = xmtn Uk(x) = xmδ (k−n), δ (k−n) =

{

xm k= n
0 otherwise

3 Solution procedures of Ramani equation by DTM and RDTM

3.1 DTM methodology

Let’s consider the coupled Ramani equation (1) with two different initial conditions as [4], [10],[12]-[16],

u(x,0) = a0+2α tanh(αx) (14)

v(x,0) =−
4
9

β α4−
16
27

α6+
5
9

α2β 2−
5
54

β 3+

[

20
9

β α4+
16
9

α6−
5
9

α2β 2
]

tanh2(αx)
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and

u(x,0) = a0−2α tan(αx) (15)

v(x,0) =−
4
9

β α4+
16
27

α6−
5
9

α2β 2−
5
54

β 3+

[

−
20
9

β α4+
16
9

α6−
5
9

α2β 2
]

tan2(αx).

U(k,h), V(k,h), which are calledT-function, denote the transformation of the functionsu(x, t), v(x, t) in eq. (1)

respectively. Then fromTable (1) and eqs. (4) to (7), we obtain the transformed form of eq. (1) as below

5(h+1)(h+2)U(k,h+2)=
(k+6)!

k!
U(k+6,h)+18(k+1)V(k+1,h)

+15
k

∑
r=0

h

∑
s=0

(r +1)(k− r +1)(k− r +2)(k− r +3)(k− r +4)U(r +1,h−s)U(k− r +4,s)

+15
k

∑
r=0

h

∑
s=0

(r +1)(r +2)(k− r +1)(k− r +2)(k− r +3)U(r +2,h−s)U(k− r +3,s) (16)

−5
(k+3)!

k!
(h+1)U(k+3,h+1)−15

k

∑
r=0

h

∑
s=0

(h− s+1)(k− r +1)(k− r +2)U(k− r +2,s)U(r,h−s+1)

−15
k

∑
r=0

h

∑
s=0

(r +1)(k− r +1)(h− s+1)U(r +1,h−s)U(k− r +1,h−s+1)

+45
k

∑
r=0

k−r

∑
l=0

h

∑
s=0

h−s

∑
p=0

(r +1)(l +1)(k− r − l +1)(k− r − l +2)U(r +1,h− s− p)U(l+1,s)U(k− r − l +2, p)

(h+1)V(k,h+1) =
(k+3)!

k!
V(k+3,h)+3

k

∑
r=0

h

∑
s=0

(r +1)(k− r +1)V(r +1,h− s)U(k− r +1,s)

+3
k

∑
r=0

h

∑
s=0

(k− r +1)(k− r +2)V(r,h− s)U(k− r +2,s) (17)

and for initial conditions (14), (15), we obtain as

U(k,0) = a0δ (k,0)+2α
[

(2α)k− k!δ (k,0)
(2α)k+ k!δ (k,0)

]

(18)

V(k,0) =

(

−
4
9

β α4−
16
27

α6+
5
9

α2β 2−
5
54

β 3
)

δ (k,0)+
(

20
9

β α4+
16
9

α6−
5
9

α2β 2
)(

(2α)k− k!δ (k,0)
(2α)k+ k!δ (k,0)

)2

and

U(k,0) = a0δ (k,0)−2α tan(
kπ
2
) (19)

V(k,0) =

(

−
4
9

β α4+
16
27

α6−
5
9

α2β 2−
5
54

β 3
)

δ (k,0)+
(

−
20
9

β α4+
16
9

α6−
5
9

α2β 2
)(

tan(
kπ
2
)

)2

We put firstly (18) into (16)-(17) and using the DTM, we get the three terms approximate traveling DTM solution of

coupled Ramani equation as
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U3,3(x, t) = a0+2α2x−2/3α4x3−2β α2t +2β α4x2t −2α4β 2xt2+8/3α6β 2x3t2+
(

−4α6β 2+2/3α4β 3
)

t3

+
(

−4β α6+8α8β 3
)

xt3+
(

28α8β 2−8/3α6β 3
)

x2t3+

(

28
3

β α8−
128
3

α10β 3
)

x3t3

V3,3(x, t) =−4/9β α4−
16
27

α6+5/9β 2α2−
5
54

β 3+

(

20
9

β α4+
16
9

α6−5/9β 2α2
)

α2x2

+

(

−
32
9

β α8−
40
9

α6β 2+
10
9

α4β 3
)

xt+

(

128
27

β α10+
160
27

α8β 2−
40
27

α6β 3
)

x3t (20)

+

(

16
9

α8β 2+
20
9

α6β 3−5/9β 4α4
)

t2+

(

−
64
9

α10β 2−
80
9

α8β 3+
20
9

β 4α6
)

x2t2

+

(

128
27

α10β 3+
160
27

β 4α8−
40
27

α6β 5
)

xt3+

(

−
1360
81

β 4α10+
340
81

α8β 5−
1088
81

α12β 3
)

x3t3

and secondly put (19) into (16)-(17), we obtain the other traveling DTM solution of eq. (1) as following

U3,3(x, t) = a0−2α2x−2/3α4x3+2α2β t +2β α4x2t −2α4β 2xt2−8/3α6β 2x3t2+
(

4α6β 2+2/3α4β 3
)

t3

+
(

4α6β +8α8β 3
)

xt3+
(

28α8β 2+8/3α6β 3
)

x2t3+

(

28
3

α8β +
128
3

α10β 3
)

x3t3

V3,3(x, t) =−4/9β α4+
16
27

α6−5/9β 2α2−
5
54

β 3+

(

−
20
9

β α4+
16
9

α6−5/9β 2α2
)

α2x2

+

(

−
32
9

α8β +
40
9

α6β 2+
10
9

α4β 3
)

xt+

(

−
128
27

α10β +
160
27

α8β 2+
40
27

α6β 3
)

x3t (21)

+

(

16
9

α8β 2−
20
9

α6β 3−5/9β 4α4
)

t2+

(

64
9

α10β 2−
80
9

α8β 3−
20
9

α6β 4
)

x2t2

+

(

−
128
27

α10β 3+
160
27

α8β 4+
40
27

α6β 5
)

xt3+

(

1360
81

α10β 4+
340
81

α8β 5−
1088
81

α12β 3
)

x3t3

Hence, it is clearly seen inTable (3) to (8) that solutions (20) and (21) provide the good accuracy with compared exact
solutions [12].

Table 3: For u(x, t), numerical results of seven steps DTM and RDTM solutions of eq. (1) with compared exact solution
(2) at t = 20 anda0 = 1, α = β = 0.01.

x
Exact[12] RDTM DTM Errors of RDTM Errors of DTM

u(x, t) U7(x) U7,7(x, t) |u(x, t)−U7(x)| |u(x, t)−U7,7(x, t)|
−50 0.990726228 0.9907262252 0.9909484041 2.8×10−9 2.221761×10−4

−40 0.9923668212 0.9923668186 0.9925853005 2.6×10−9 2.184793×10−4

−30 0.9941371636 0.9941371613 0.994329091 2.3×10−9 1.919273×10−4

−20 0.9960140671 0.9960140653 0.9961574997 1.8×10−9 1.434326×10−4

−10 0.9979670454 0.9979670444 0.9980439141 1.0×10−9 7.68687×10−5

10 1.001953749 1.00195375 1.001876877 1.0×10−9 7.6872×10−5

20 1.003909050 1.003909051 1.003765614 1.0×10−9 1.43436×10−4

30 1.005789625 1.005789628 1.005597698 3.0×10−9 1.91927×10−4

40 1.007564728 1.00756473 1.007346259 2.0×10−9 2.18469×10−4

50 1.009210856 1.009210859 1.008988739 3.0×10−9 2.22117×10−4
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Fig. 1: Comparison between exact solution (2) and five steps RDTM, DTM solutions ofu(x, t) ata0 =
1
2 , α = β = 0.03.

And comparison of errors d)Sienna-RDTM, SlateBlue-DTM.

Table 4: For v(x, t), numerical results of seven steps DTM and RDTM solutions of eq. (1) with compared exact solution
(2) at t = 20 anda0 = 1, α = β = 0.01.

x
Exact[12] RDTM DTM Errors of RDTM Errors of DTM

v(x, t) V7(x) V7,7(x, t) |v(x, t)−V7(x)| |v(x, t)−V7,7(x, t)|
−50 −8.822839648×10−8 −8.822106112×10−8 −8.823201645×10−8 7.33534×10−12 3.61999×10−12

−40 −8.785868735×10−8 −8.785217836×10−8 −8.785931076×10−8 6.50899×10−12 6.2341×10−13

−30 −8.754022597×10−8 −8.753492301×10−8 −8.754027998×10−8 5.30295×10−12 5.401×10−14

−20 −8.729383894×10−8 −8.729008043×10−8 −8.729383182×10−8 3.75851×10−12 7.12×10−15

−10 −8.713716109×10−8 −8.713520229×10−8 −8.713715553×10−8 1.9588×10−12 5.561×10−15

10 −8.713295226×10−8 −8.71348706×10−8 −8.713295226×10−8 1.91834×10−12 5.59×10−15

20 −8.72857484×10−8 −8.728947099×10−8 −8.72857608×10−8 3.72259×10−12 1.24×10−14

30 −8.752885527×10−8 −8.753412915×10−8 −8.752893306×10−8 5.27388×10−12 7.779×10−14

40 −8.784482114×10−8 −8.785130927×10−8 −8.784547184×10−8 6.48813×10−12 6.507×10−13

50 −8.821289529×10−8 −8.822021826×10−8 −8.821656659×10−8 7.32297×10−12 3.6713×10−12
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Fig. 2: Comparison between exact solution (2) and five steps RDTM, DTM solutions ofv(x, t) at a0 =
1
2 , α = β = 0.03.

And comparison of errors d)MediumTurquoise-RDTM , SlateBlue-DTM.

3.2 RDTM methodology

As the same manner, again we consider the eq. (1) with initial conditions (14)-(15) to obtain the RDTM solutions.Uk(x),
Vk(x), which are calledt dimensional spectrum functions, denote the transformation of the functionsu(x, t), v(x, t in eq.
(1) respectively. Then fromTable 2 and eqs. (8) to (13), we obtain the transformed form of eq. (1) as below

5(k+1)(k+2)Uk+2(x) =
d6

dx6Uk(x)+18
d
dx

Vk(x)+15
k

∑
r=0

d2

dx2Uk−r(x)
d3

dx3Ur(x)+15
k

∑
r=0

d
dx

Uk−r(x)
d4

dx4Ur(x)

−15
k

∑
r=0

d2

dx2Ur(x)(k− r +1)Uk−r+1(x)−15
k

∑
r=0

d
dx

Ur(x)(k− r +1)
d
dx

Uk−r+1(x) (22)

+45
k

∑
r=0

k−r

∑
s=0

d
dx

Ur(x)
d
dx

Us(x)
d2

dx2Uk−r−s(x)−5(k+1)
d3

dx3Uk+1(x)

(k+1)Vk+1(x) =
d3

dx3Vk(x)+3
k

∑
r=0

d
dx

Vr(x)
d
dx

Uk−r(x)+3
k

∑
r=0

Vr(x)
d2

dx2Uk−r(x) (23)
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and for initial conditions (14)-(15), we obtain reduced transform form as respectively

U0(x) = a0+2α tanh(αx) (24)

V0(x) =

(

−
4
9

β α4−
16
27

α6+
5
9

α2β 2−
5
54

β 3
)

+

(

20
9

β α4+
16
9

α6−
5
9

α2β 2
)

tanh2(αx)

and

U0(x) = a0−2α tan(αx) (25)

V0(x) =

(

−
4
9

β α4+
16
27

α6−
5
9

α2β 2−
5
54

β 3
)

+

(

−
20
9

β α4+
16
9

α6−
5
9

α2β 2
)

tan2(αx)

Table 5: For u(x, t), numerical results of seven steps DTM and RDTM solutions of eq. (1) with compared exact solution
(3) at t = 20 anda0 = 1, α = β = 0.01.

x
Exact[12] RDTM DTM Errors of RDTM Errors of DTM

u(x, t) U7(x) U7,7(x, t) |u(x, t)−U7(x)| |u(x, t)−U7,7(x, t)|
−50 1.010978045 1.010978054 1.010257505 9.0×10−9 7.2054×10−4

−40 1.008503055 1.00850306 1.008041336 5.0×10−9 4.61719×10−4

−30 1.006230580 1.006230583 1.005938409 3.0×10−9 2.92171×10−4

−20 1.004095861 1.004095864 1.003922985 3.0×10−9 1.72876×10−4

−10 1.002047104 1.002047105 1.001966559 1.0×10−9 8.0545×10−5

10 0.9980337012 0.9980337003 0.9981142416 9.0×10−10 8.05404×10−5

20 0.9959874261 0.995987424 0.9961602952 2.1×10−9 1.728691×10−4

30 0.9938570755 0.9938570716 0.9941492333 3.9×10−9 2.921578×10−4

40 0.9915912460 0.9915912401 0.9920529338 5.9×10−9 4.616878×10−4

50 0.9891258314 0.9891258222 0.9898462633 9.2×10−9 7.204319×10−4

Table 6: For v(x, t), numerical results of seven steps DTM and RDTM solutions of eq. (1) with compared exact solution
(3) at t = 20 anda0 = 1, α = β = 0.01.

x
Exact[12] RDTM DTM Errors of RDTM Errors of DTM

v(x, t) V7(x) V7,7(x, t) |v(x, t)−V7(x)| |v(x, t)−V7,7(x, t)|
−50 −9.993227215×10−8 −9.991393181×10−8 −9.992708042×10−8 1.834034×10−11 5.16173×10−12

−40 −9.923603996×10−8 −9.922331725×10−8 −9.923517293×10−8 1.272271×10−11 8.6703×10−13

−30 −9.875256259×10−8 −9.874398369×10−8 −9.875245418×10−8 8.5789×10−12 1.0841×10−13

−20 −9.843424659×10−8 −9.842893011×10−8 −9.843422759×10−8 5.31648×10−12 1.9×10−14

−10 −9.825251278×10−8 −9.824995748×10−8 −9.825250579×10−8 2.5553×10−12 6.99×10−15

10 −9.824782982×10−8 −9.825033777×10−8 −9.824783681×10−8 2.50795×10−12 6.99×10−15

20 −9.842449482×10−8 −9.842975832×10−8 −9.842450789×10−8 5.2635×10−12 1.307×10−14

30 −9.873690092×10−8 −9.874541644×10−8 −9.873685319×10−8 8.51552×10−12 4.773×10−14

40 −9.921301115×10−8 −9.922565351×10−8 −9.921226004×10−8 1.264236×10−11 7.5111×10−13

50 −9.98994945×10−8 −9.99177279×10−8 −9.989455455×10−8 1.82334×10−11 4.93995×10−12
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As in the DTM solution process, by using RDTM algorithm we putfirstly (24) into (22)-(23), we get the three terms
RDTM solution of coupled Ramani equation as

U3(x) = a0+2α tanh(αx)−2α2β
(

1− tanh2(αx)
)

t −
2sinh(αx)α3t2

(

−48α4cosh2(αx)
)

cosh7(αx)

−
2sinh(αx)α3t2

(

72α4−12α2β cosh2(αx)+β 2cosh4(αx)
)

cosh7(αx)

−
32

15cosh10(αx)

[

1260α8β cosh4(αx)+8820α10cosh4(αx)−945β α8cosh2(αx)+11340α10] t3 (26)

−
32

15cosh10(αx)

[

12α8β cosh8(αx)−18900α10cosh2(αx)
]

t3

−
32

15cosh10(αx)

[

−1020α10cosh6(αx)+8α10cosh8(αx)−378α8β cosh6(αx)
]

t3

V3(x) =−
4
9

β α4−
16
27

α6+
5
9

β 2α2−
5
54

β 3+

(

20
9

β α4+
16
9

α6−
5
9

β 2α2
)

tanh2(αx)

+
8
9

sinh(αx)
(

cosh2(αx)−3
)(

20α2β +16α4−5β 2
)

α5t

cosh5(αx)

−
9
8

α8
(

20α2β +16α4−5β 2
)[

4cosh6(αx)−126cosh4(αx)+420cosh2(αx)−315
]

t2

cosh8(αx)

+
128
27

(

6615cosh4(αx)−18900cosh2(αx)
)[

20α2β +16α4−5β 2
]

α11sinh(αx)t3

cosh11(αx)
(27)

+
128
27

(

2cosh8(αx)−510cosh6(αx)+14175
)[

20α2β +16α4−5β 2
]

α11sinh(αx)t3

cosh11(αx)

and secondly put (25) into (22)-(23), we obtain the other RDTM solution of eq. (1) as following

U3(x) = a0−2α tan(αx)+2α2β
(

1+ tan2(αx)
)

t −
2sin(αx)α3t2

(

−48α4cos2(αx)
)

cos7(αx)

−
2sin(αx)α3t2

(

72α4+12α2β cos2(αx)+β 2cos4(αx)
)

cos7(αx)

+
32

15cos10(αx)

[(

8820α2cos4(αx)+945β cos2(αx)+378β cos6(αx)+11340α2
)

α8
]

t3 (28)

+
32

15cos10(αx)

[(

−1260β cos4(αx)−1020α2cos6(αx)−18900α2cos2(αx)
)

α8
]

t3

+
32

15cos10(αx)

[(

−12β cos8(αx)+8α2cos8(αx)
)

α8] t3

c© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 4, 198-212 (2016) /www.ntmsci.com 208

Fig. 3: Comparison between exact solution (3) and five steps RDTM, DTM solutions ofu(x, t) ata0 =
1
2 , α = β = 0.02.

And comparison of errors d)Sienna-RDTM, SlateBlue-DTM.

V3(x) =−
4
9

β α4+
16
27

α6−
5
9

β 2α2−
5
54

β 3+

(

−20
9

β α4+
16
9

α6−
5
9

β 2α2
)

tan2(αx)

−
8
9

sin(αx)α5t
(

cos2(αx)−3
)(

−20α2β +16α4−5β 2
)

cos5(αx)

−
9
8

α8
(

−20α2β +16α4−5β 2
)[

−126cos4(αx)+4cos6(αx)+420cos2(αx)−315
]

t2

cos8(αx)

+
128
27

(

6615cos4(αx)−18900cos2(αx)
)[

−20α2β +16α4−5β 2
]

α11sin(αx)t3

cos11(αx)
(29)

+
128
27

(

2cos8(αx)−510cos6(αx)+14175
)[

−20α2β +16α4−5β 2
]

α11sin(αx)t3

cos11(αx)

Thus, it is obviously noted on theTable 3 to 8 andFig. (1)-(4) that solutions (26)-(29) provide the good accuracy with
compared exact [12] and DTM solutions. Also fromTable 9, RDTM is more faster than DTM.
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Fig. 4: Comparison between exact solution (3) and five steps RDTM, DTM solutions ofv(x, t) at a0 =
1
2 , α = β = 0.02.

And comparison of errors d)MediumTurquoise-RDTM , SlateBlue-DTM.

4 Conclusion

In this paper, we consider the very famous physical problemscoupled Ramani equation (1) to find two approximate
traveling wave solutions by using DTM and RDTM. Moreover, weperfectly obtain approximate solutions of (1)
compatible with exact solutions in [12]. In order to test efficiency, convergence and accuracy of DTM and RDTM, we
perform the numerical valuesa0 = 1, α = 0.01, β = 0.01 anda0 = 3

2, α = 0.04, β = 0.04 anda0 = 3
2, α = 0.02,

β = 0.02 in the seven step approximate solutions of eq. (1) which are shown inTable 3 to 8. Also, fora0 =
1
2, α = 0.03,

β = 0.03 anda0 = 1
2, α = 0.02, β = 0.02, error rates for comparisons of exact [12] and seven step RDTM, DTM

solutions are presented inFig. (1) to (4). Furthermore, the CPU times of DTM and RDTM process are compared in
Table 9. Results show that DTM and RDTM are efficient and powerful technique, but RDTM is more easier, fast and
better than DTM.

c© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 4, 198-212 (2016) /www.ntmsci.com 210

Table 7: Comparison of errors for seven step DTM and RDTM solutions with exact solution2 at a0 = 3
2, α = 0.04,

β = 0.04

x
Errors of RDTM Errors of DTM

|u(x, t)−U7(x)| |v(x, t)−V7(x)| |u(x, t)−U7,7(x, t)| |v(x, t)−V7,7(x, t)|
−50 1.03×10−7 5.674312×10−9 1041.757463 1.969313611×10−4

−25 5.336×10−6 2.2925246×10−8 4.433682835 1.007732888×10−6

−10 1.09×10−5 1.9163592×10−8 0.894570155 3.9147652×10−8

10 9.955×10−6 1.7818539×10−8 0.894281382 3.9334112×10−8

25 5.845×10−6 2.365664×10−8 4.503690346 7.2896423×10−7

50 3.31×10−7 5.987977×10−9 1047.990895 1.603518458×10−4

Table 8: Comparison of errors for seven step DTM and RDTM solutions with exact solution3 at a0 = 3
2, α = 0.02,

β = 0.02

x
Errors of RDTM Errors of DTM

|u(x, t)−U7(x)| |v(x, t)−V7(x)| |u(x, t)−U7,7(x, t)| |v(x, t)−V7,7(x, t)|
−50 1.6732×10−5 1.3985587×10−8 0.487909733 4.2968583×10−8

−25 5.98×10−7 1.35208×10−9 4.6062085×10−2 3.09447×10−10

−10 1.33×10−7 3.854221×10−10 1.1065658×10−2 3.51551×10−11

10 1.48×10−7 3.721891×10−10 1.1062022×10−2 3.50481×10−11

25 6.2×10−7 1.3290794×10−9 4.6042264×10−2 1.409608×10−10

50 1.4049×10−5 1.4859454×10−8 0.487320038 3.026153×10−8

Table 9: Comparison of CPU time for seven step DTM and RDTM solutions at a0 = 1, α = 0.03,β = 0.03

Iteration numbers CPU times for RDTM CPU times for DTM
3 0.011 second 16.297 second
5 0.015 second 132.047 second
6 0.016 second 307.406 second
7 0.026 second 647.985 second
8 0.034 second 1427.203 second
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