
State-of-the-Art of Virtualization, its Security Threats and Deployment Models

Fatma Bazargan, Chan Yeob Yeun, Mohamed Jamal Zemerly
Electrical and Computer Engineering Department, Khalifa University of Science, Technology and

Research, PO Box 573, Sharjah, United Arab Emirates

Abstract

Virtualization is an emerging technology which
provides organizations with a wide range of benefits. But
unluckily, from a security standpoint, functionality often
takes precedence over a main area like security, leaving
security to be retrofitted in later. This paper mainly
emphasizes on several security threats that exists today in a
virtualization environment. However, the main contribution
of the paper lies in highlighting the notable types of
virtualization, its security threats and hypervisor
deployment models. To start with, we will further our
understanding of the state of knowledge for the latest
virtualization technology, the role of the hypervisor and the
two different types of virtualization architectures. We will
then provide an in-depth explanation about the publicly
adopted forms of virtualization and discuss the benefits and
drawbacks that accompany each of them. The paper will
finally highlight several security threats that exist in a
virtualized environment today and the state-of-the-art of
open source virtual machine monitor deployment models.

1. Introduction

At present, virtualization has become a way of life in
many organizations. It has been applied across multiple
Information Technology (IT) aspects such as systems,
storage, networks, security and applications. Today we can
witness the widespread growth of virtualization technology
in testing, training, development and even production
environments.

So what is the buzz-word virtualization all about? In
order to define it in simple words, it is a technology that
introduces a software abstraction layer between the
underlying hardware i.e. the physical platform/host and the
operating system(s) (OS) i.e. the guest virtual machine(s)
(VM) including the applications running on top of it. This
software abstraction layer is known as the virtual machine
monitor (VMM) or a hypervisor [1-5].

Virtualization technology was first developed in the
mid-1960s by the IBM Corporation. At that point in time,
virtualization was best known as time sharing. The whole
concept of time sharing was that it enabled a number of
computer programmers to work on their designated
consoles on the same large mainframe computer while
avoiding the wait time for the availability of the peripheral.
This was possible through partitioning large mainframe
computers into several logical instances while running on
the single physical mainframe computer as its host. The

IBM scientists at that time observed that due to the
partitioning capability, numerous processes and
applications were able to run at the same time, which
increased the total efficiency of the computing environment
and reduced the maintenance overhead in [1-3].

This overall notion of optimizing hardware utilization,
improving resource utilization by providing a unified
operating platform, and trimming down the maintenance
overhead drove the advent of virtualization technology.
Nowadays, virtualization enables enterprise users and IT
developers to have a unified physical platform whilst
running on it multiple different operating systems and
multiple applications. As enterprises continue to embrace
this technology in order to take full advantage of the set of
benefits it offers; they often overlook an important area like
security.

Hence, migrating an enterprise’s computing resources to
a virtualized environment not only brings with it all the
inherent security threats and vulnerabilities of a running
service or an operating system running as a guest but also
introduces new virtualization-specific security threats and
vulnerabilities that need to be addressed.

2. Virtual Machine Monitor

Any virtualized environment consists of the VMM or
the hypervisor whose purpose is to allocate the physical
resources (such as the CPU, memory, network, and storage)
to each virtualized OS or to each application running on a
virtualized OS. Once the hypervisor is in place, it emulates
a hardware device for each virtual OS and handles each
virtual OS’s communications with the physical resources
[4, 8-9]. Figure 1 depicts a virtualized environment, where
the hypervisor provides an interface between each VM and
the underlying physical hardware resource.

The hypervisor software can be either installed on its
own or as a part of an OS. Hence, the way the hypervisor
software is installed introduces two different forms of
virtualization architectures as depicted in Figure 2. In the
first form of virtualization architecture known as bare-metal
virtualization, there exists no host OS because the VMM
sits just above the underlying physical hardware and
intercepts the communication between the multiple VMs
and the physical hardware. In this form there exists a main
management VM whose core responsibility is to manage
the guest VMs and the communication with the physical
hardware [6-7].

International Journal for Information Security Research (IJISR), Volume 3, Issue 3, September 2013

Copyright © 2013, Infonomics Society 335

Figure 1. Illustration of a virtualized environment

In the second form of virtualization architecture known
as hosted-virtualization, the VMM sits just on top of the
host OS and runs as an application. It is the host OS that is
responsible to provide Input/Output (I/O) drivers and to
manage the guest VMs [6-7].

Figure 2. Types of virtualization architectures

The main characteristic of the VMM is that it removes
the traditional physical hardware dependency of an OS on
its physical hardware resource. In other words, the physical
resources are directly controlled by the VMM and not by
the host OS or the physical hardware. Due to this fine trait,
multiple different OS(s) can run on the same physical
hardware at the same time while being isolated from one
another. As a result, the physical hardware is partitioned
into one or more logical units known as virtual machines
(VMs). A VM can run any x86-class physical host system,
regardless of the hardware structure as in [1-3] and [8].
There are three primary attributes to the VMM:
1. Isolation: only the VMM in a virtualized environment

has the responsibility to control and monitor all guest
VMs residing on the physical hardware and allocate the
required physical resources to each guest VMs. VMMs
provide isolation; that is every VM is isolated from any
other VM on the same physical hardware. In other
words, applications running on one VM cannot interact
or see applications that are running on a different VM.
In addition, every VM is isolated from the host OS in
the same way [9-11].

2. Interposition: VMMs manage all administrative
privileged instructions on the physical hardware. The
guest OS communicates all its traps and interrupts to
the VMM, which will eventually process the events by
interacting directly with the physical platform on
behalf of the guest OS. The VMM intercepts all I/O
requests from the guest OS(s) to the virtual devices and
maps them to the exact physical I/O device through an
I/O abstraction. Through this abstraction the VMM
manages and schedules all VMs concurrently [9-11].

3. Inspection: the VMM has access to all the states of the
VMs running on the physical hardware. This includes
the memory state, CPU state, and I/O device states.
This is necessary for VMM in order to encapsulate the
state of a VM to enable capabilities such as check
pointing (i.e. capture a snapshot of the current state),
rollback (i.e. restore to a previously defined state), and
replay (i.e. repeat to view an event). This fine trait
helps administrators to save, copy, move, compare and
instantiate environments with protected states from one
physical host to another [9-11].

3. Virtualization and Protection Rings

Protection rings architecture is a formal mechanism to
segregate the trusted operating system from the untrusted
user programs [2]. These rings allow various levels of
isolation and abstraction of privilege within the architecture
of a computer system. The rings are arranged in a
hierarchical way from most privileged (i.e. most trusted and
unrestricted access to resources – Ring-0) to least
privileged (i.e. least trusted and restricted access to
resources – Ring-3) as presented in Figure 3. Ring-0 is the
most privileged ring that interacts directly with the physical
hardware resources [1-2, 12].

The least privileged rings cannot access the inner rings
without predefined instructions in place. These restrictions
are set on the outer rings to protect data and functionality
from faults, misuse of resource, and malicious behavior.
For example, no user level program running in Ring-3
should be able to turn on the speakers (i.e. a device driver)
without the consent of the user, because device drivers are a
Ring-1 function which is a higher privileged level than
Ring-3 [12].

Figure 3. Protection rings in x86 CPU architecture

International Journal for Information Security Research (IJISR), Volume 3, Issue 3, September 2013

Copyright © 2013, Infonomics Society 336

The most common CPU architecture is the x86-
compatible which provides four protection rings: 0, 1, 2,
and 3. Only Ring-0 and Ring-3 are usually used. Literarily,
Ring-0 is the kernel mode (also known as supervisor mode
or system space) and Ring-3 is the user mode. The kernel
mode is where the code is executed without any restriction
access to the underlying hardware resources. Any CPU
instruction can be executed and any memory address can be
referenced in this mode. It is reserved for the most trusted
functions of the OS. In the user mode on the other hand, the
code is executed with no ability to directly access the
underlying hardware resources or reference any memory
address. Hence, the codes running in this mode should
delegate to system application programming interfaces
(API) to access the hardware or memory [2].

In a virtualized environment the hypervisor is said to
run in the kernel mode (i.e. Ring-0), because, it is the
responsibility of the hypervisor to assign the hardware
resources and allocate memory address to the guest VMs.
Henceforth, the kernel of the guest VMs runs in a less
privileged ring than Ring-0. Therefore, the kernel of the
guest VMs has less privilege to access resources or
reference memory address without the consent of the
hypervisor [12].

4. Virtues and Vices of Virtualization

Like every other technology, virtualization also has its
own set of benefits and drawbacks. This section will
elaborate on the numerous drivers that have motivated the
quicker embracement of virtualization technologies and the
drawbacks that organizations should be alert about.

4.1 The Benefits of Virtualization

1. Consolidation: the primary goal behind it is

combining and unifying. The workloads are combined
on fewer physical platforms which are capable of
sustaining their demand for computing resources, such
as CPU, memory, I/O. The result is increased resource
utilization and hardware optimization. In the sense,
you have a single hardware platform that can support a
multitude of virtual environments. In addition,
virtualization helps ease and simplify legacy system
migrations by providing a common and widely
compatible platform upon which legacy system
instances can run. This improves the overall chances
that applications can be migrated for older,
unsupported, and riskier platforms to newer hardware
and supported hardware with minimal impact.
Consolidation also helps to streamline development
and test environments.

2. Reliability: virtualization maintains functionality and
operation availability by providing high isolation
between its virtual machines. In the sense, a system
fault on one VM or its partition will have no effect on
other partitions that are running on the same physical
platform. In addition, virtualization can dynamically
allocate resources to a single logical or physical
partition at a given runtime. This is known as just-in-

time or on-demand provisioning of additional partitions
as and when required with no concern about hardware
procurement, configuration, or installation.

3. Security: virtualization introduces the added value of
security through the encapsulation and isolation of
virtual machines operating systems. In other words, if a
certain partition or service on a VM is compromised
this stops the compromise from being extended to other
partitions that are existent on the same virtualization
platform. For example if a virtualization platform hosts
a VM for a web server and a VM for a mail server, if
the web server service is compromised this does not
mean that the mail server service is also compromised
because each VM is isolated from any other VM on the
same physical host. In addition, the security
configurations for each partition remain specific to its
requirements rather than the server as whole [13-15].

4.2 The Drawbacks of Virtualization

1. Performance is an important trait for any organization

to accomplish its operations efficiently. IT
professionals should identify what are their
performance requirements. For example some
hardware platforms do consider virtualization; whereas
others just operate efficiently as a standalone. In
addition, some types of applications may need
substantial CPU processing power whereas other may
need significant I/O requirement [5].

2. Redundancy: the virtualization hardware platform is
still considered a major issue. In other words,
organizations rely immensely on data accessing and
data processing. They need to ensure that this sort of
access is highly available and in any case of hardware
failure the workload is transferred to another system.
But in case of a virtualized platform; if it is hosting
five different virtual machines that are running
different services if a hardware failure occurs in the
virtualization platform that will bring down the entire
VMs, unless a redundant system is put in place with
the same configuration and system specifications [2],
[4-5].

3. Operations: IT professionals responsible for
virtualized environments should consider the
maintenance cost that accompanies the deployment of
a virtualized environment such as licensing constraints,
software upgrades, change control, VM lifetime,
hardware maintenance, etc. In addition, IT
professionals should have a unique set of expertise to
maintain and manage a virtualized environment
considering the complexity characteristics it comes
with [1-2] [4-5].

5. Approaches of Virtualization

There exist several approaches of virtualization that are
deployed in IT environments. This section will handle the
various approaches of virtualization and will highlight some
of their advantages and disadvantages.

International Journal for Information Security Research (IJISR), Volume 3, Issue 3, September 2013

Copyright © 2013, Infonomics Society 337

5.1 Full Virtualization

This approach of virtualization is a type of Server
Virtualization. Server virtualization abstracts both the
physical resources on the physical host as well as the guest
OS that runs on the physical hardware. In other words, full
virtualization virtualizes all features of physical hardware
resources [6]. This approach provides the virtualization
environment with the ability to entirely simulate the
underlying physical hardware. The resultant is a system
where any software that is capable of direct execution on
the physical host is able to run in the VM, and any OS that
is supported by the underlying physical host can run in each
individual VM.

Different operating systems can run concurrently in a
full virtualization setup. In addition, the Input/Output (I/O)
devices are allocated to the guest OSs by emulating the
physical devices in the VMM. Interacting with these I/O
devices in the virtual environment are then directed to the
real physical devices either by the host OS driver or by the
VM driver [6]. Figure 4 illustrates the full virtualization
concepts.

Figure 4. Full virtualization concepts

Full virtualization is fulfilled by the use of both binary
translation and direct execution. In other words, the
hypervisor resides in Ring-0; hence, the physical CPU
executes non-critical instructions at native speed. On the
other hand, guest OS instructions are translated on the fly
and cached for future use. In addition, user level
instructions do run unmodified at native speed. With these
settings full virtualization offers best isolation and security
for guest virtual machines and can be easily migrated [2].

The advantages of this approach are that it provides
complete isolation between each guest VM and any other
VM residing on the same physical host and between the
guest VMs and the VMM. Moreover, it is easy to use, in the
sense that any user can install a software product such as
VMware Workstation on the preferred choice of OS and
once they switch the VMware workstation on; a guest OS
can be installed and used. In addition, users can run
multiple different guest OS(s) simultaneously and this
approach provides near-native CPU and memory
performance.

The disadvantages of this approach are that it requires
the exact appropriate blend of hardware and software

components and poor performance of the emulated VM due
to the impact by trap- and emulate techniques of x86
privileged instructions [2-3, 6, 12]. Both VMware and
Microsoft Virtual Server virtualization solutions use the full
virtualization approach.

5.2 Para virtualization

This approach is considered a subset of server
virtualization. However, it differs from full virtualization in
the sense that the running guest OS should be modified in
order to be operated in the virtualized environment [2]. Para
virtualization provides partial simulation of the underlying
hardware. Wherein, most but not necessarily all hardware
components are simulated. There exists a thin software
interface between the physical hardware and the modified
guest OS. A fascinating point in this technique is that the
guest VMs are aware of the fact that they are running in a
virtualized environment [6].

In other words, in this approach the guest OS kernel acts
as a bridge between the applications and the execution done
on host hardware level. Para virtualization substitutes non-
virtualized instructions with something known as
Hypercalls which communicate directly with the VMM.
The concept of a Hypercall is similar to that of a system
call. Wherein, system calls are used by any application at
the user level to ask for services from the OS. Hence, it
provides the interface between the application and the OS.
But with Hypercalls the communication is between the
application and the hypervisor itself [6].

One of the main characteristics of Para virtualization is
that it is easier to implement than the full virtualization
approach. The reason behind it is because once the host OS
boots the VM emulator is launched which leads to the host
going to a suspension mode and the guest OS running in an
active state. In addition, the guest OS shows high
performance for network and I/O disk when no hardware
assistance is available [3-4]. Talking about its
disadvantages, the guest VMs running in a Para virtualized
environment require a substantial amount of OS kernel
modification, VMs that suffer from lack of backward
compatibility and are not very portable or easy to migrate to
other hosts [6]. Figure 5 illustrates the Para virtualization
concept. Xen virtualization system uses the Para
virtualization approach.

Figure 5. Para virtualization concepts

International Journal for Information Security Research (IJISR), Volume 3, Issue 3, September 2013

Copyright © 2013, Infonomics Society 338

5.3 Hardware-Assisted Virtualization

This technique is also known as native virtualization,
accelerated virtualization, and hardware VM depending on
the manufacturer. This approach of virtualization neither
uses the binary translation as used in full virtualization nor
uses the Hypercalls as used in Para virtualization [2]. But it
is an approach that allows for a CPU instruction set
communication in which the hypervisor runs in a new level
known as the root level mode which resides below the OS
kernel level.

In this virtualization form the critical and privileged
instructions are set to automatically trap the hypervisor
directly. This approach was introduced recently hence the
disadvantage introduced by the first generation included
lagging behind in performance when compared to full
virtualization. But, this can be solved with the introduction
of the second generation of hardware-assisted technologies.
Figure 6 illustrates the hardware-assisted virtualization
concepts [6].

Figure 6. Hardware-assisted virtualization concepts

5.4 Operating System Virtualization

This technique is form of server virtualization and is also

known as Single Kernel Image (SKI) or container-based
virtualization. This concept is based on single OS instance
which means running more instances of the same OS in
parallel. In other words, not the actual hardware but the host
operating system is the one being virtualized and the
resulting VMs all use the same virtualized OS image. The
virtualized operating system image is known as the
virtualization layer [1-2, 5-6].

This architecture eases the administration of the system
by allowing system administrators to allocate resources both
when creating a VM as well as dynamically at runtime.
When comparing this technique to other server virtualization
setups, OS-layer virtualization tends to be more efficient but
slightly fails to provide the same isolation level as the rest.

However, this approach also has its shortcomings since
the VMs must use the same kernel as the host OS it becomes
inconvenient to run for example Windows on top of Linux.

5.5 Application Virtualization

In this form of virtualization, the user has the ability to

run a server application locally by using the server
application resources without the need and the complexity of
installing the required application on his/her personal

computer [1-2] and [5,6].
These virtualized applications on the fly are designed to

run in a small virtual environment containing only the
resources required for the application to execute. Thus in
this approach each user has a virtual isolated application
environment virtually.

5.6 Network Virtualization

This form is a type of resource virtualization. Resource

virtualization virtualizes system specific resources such as
storage drives, name spaces and the network resources.
Network virtualization is to combine the network hardware
and software resources into a single software-based
manageable entity known as a virtual network. This form
can be categorized either by combining various networks
(external) or parts of networks (internal) [1-2].

5.7 Storage Virtualization

Storage virtualization is also a form of resource
virtualization, where a multiple physical disk drives are
assembled into a single logical entity that is then provided
to the host server and operating system. The anatomy of
this assembly is as follows: the physical storage resources
are aggregated to form a storage pool which then forms a
logical storage. This logical storage appears to be a single
uniform storage device to the end user [1-2].

5.8 Summary of Approaches to Virtualization

Figure 7 summarizes all the various types of

virtualization technology.

Figure 7. Summary of the types of virtualization

International Journal for Information Security Research (IJISR), Volume 3, Issue 3, September 2013

Copyright © 2013, Infonomics Society 339

6. Security Threats in a VE

Many of the unique characteristics of virtualization
offer both benefits and drawbacks to security. This section
will elaborate on virtualization-specific threats and
vulnerabilities that exist today and need to be addressed.

6.1 Virtualization Based Malware

When talking about virtualization based malware we
categorize it to either software-based malware or hardware-
based malware.

The first controversial rootkit that comes to mind when
talking about virtualization based malware is that of the
codename “Blue Pill”. It is a special type of malware that
utilizes the virtualization methods of certain CPUs to
execute as a VMM. It induces a virtual platform on which
the entire operating system runs on. It explores the whole
status of the machine and allows the intruder full privilege
whilst the OS thinks it is running directly on the physical
hardware. The main concept behind its functionality is that
the piece of malware can take over the host OS and can be
undetected by residing within the VMM [1-2].

The “Red Pill” on the other hand operates just the
opposite manner of the “Blue Pill”. In the sense, the Red
Pill technique aids the OS to detect the presence of a
hypervisor. When Red Pill runs on VM, it focuses on
identifying VM usage without looking for file system
artifacts based on relocation of sensitive data structures. In
other words, it is able to conclude if it is running in a virtual
platform or on a real physical platform. Other two rootkits
are the Vitriol and SubVirt. The SubVirt installs a VMM
beneath an existing OS and moves the original OS into a
VM. It is capable of modifying the system boot sequence
and emulates a set of different virtual devices. Vitriol on the
other hand is a hardware-based rootkit with capacity to
swap the entire OS-visible state of the processor in and out
of memory and the VMs have direct memory and device
access [16-17].

The main reason why these virtualization based
malware succeed in being a security challenge in a
virtualized environment is because VM tools leave a large
footprint including running processes, services, and registry
keys. These VM based malware often look for these items
and then conclude if they are running in an environment
that is real or virtual.

6.2 Denial of Service Attack

The isolation attribute of virtualization is considered
both an opportunity and a threat. In a virtualized
environment the isolation happens among guest OS VMs
and between the guest OS VM and the host OS. Each VM
has its own dedicated set of physical resources such as
memory disk, CPU, network resource, etc. that is shared
with the underlying host. None of the guest VMs can
allocate,share or take over the physical resources of any
other guest VM running on the physical host due to the fine
isolation attribute.

However, Denial of Service (DoS) attack can occur in a

virtualized environment when an attacker takes over a guest
VM and is then able to gain control over the physical
resources of other guest VMs on the same physical host. A
simple DoS scenario can occur when a compromised guest
VM tries to overcome the isolation barriers by taking over
all the physical resources of the physical host causing
corruption and/or unavailability of other guest VM or the
host OS. Hence, the physical host is unable to process
service requests made by other individual guest VMs
leading to denial of access due to the unavailability of
requested resources as in [8] and [17].

6.3 Communication Attack among guest VMs and

the host

As mentioned, isolation is one of the primary benefits of
virtualization. This attribute enables each guest VM to
execute all its actions confined to its own address space.
Hence, allowing each guest VM to be self-protected and
encapsulated from one another (i.e. in resource allocation or
execution of its own applications). Isolation should be
carefully configured and closely monitored in a virtualized
environment to avoid the interference or unwanted
accessibility among the various guest VMs themselves or
between the guest VMs and the physical host.

However, the introduction of features such as shared
clipboard that allows data to be transferred back and forth
between guest OS VMs and the host OS has introduced a
security challenge. Wherein, this may be treated as a
gateway for transferring malicious codes between the guest
OS VMs and between the guest OS VM and the host OS. In
addition, some virtualization avoids isolation altogether to
support applications designed for one OS to be operated on
another OS, this may introduce flexibility but it also raises a
security challenge. Because where there is no isolation
between the host OS and the guest OS VMs grants the guest
OS VMs an unlimited access to the host OS’s resources,
such as file system and networking devices and in this case
the host OS’s file system becomes vulnerable [8] and [17].

6.4 VM Escape

The anatomy of a virtualized environment is that of
having multiple guest VMs running in isolation. The VMM
is responsible to provide isolation between the various VMs
residing on the physical host. This isolation and
encapsulation feature is either made among the guest VMs
themselves or between the guest VMs and the actual
physical host. In other words, any guest VM on a physical
host is in an isolated environment and cannot interact with,
monitor, or control any other VM on the same host. In
addition, the guest VM OS is incapable of knowing if it is
actually running in a virtual or real environment. More
importantly, there is no way to jailbreak out of a guest VM
and interact directly with the VMM.

However, the process wherein a guest VM can jailbreak
and directly interact with the VMM is known as “VM
escape”. The VMM is the core of any virtualized
environment. It resides between the physical host and the
guest VM OS and it has the capability to control the

International Journal for Information Security Research (IJISR), Volume 3, Issue 3, September 2013

Copyright © 2013, Infonomics Society 340

execution of all different guest VMs that are running on the
physical host. Therefore, any attacker having the ability to
escape the guest VM environment and directly interact with
the VMM will gain access over every other VM on the
physical host. This compromise of the VMM by VM escape
is known as “hyperjacking” [18].

6.5 Inter-VM Attacks and Network Blind Spots

Network blind spots is when the traditional network
security solutions are blinded and cannot detect the
malicious communication behavior that might occur
between the guest VMs and between the guest VMs and the
host (i.e. inter-VM) residing on the same physical platform.
This introduces a significant security threat in a virtualized
environment.

There are two scenarios to inter-VM attacks. In one
scenario, the compromise of a guest VM residing on a
physical host can enable the attacker to compromise all
other guest VMs on the same host. The increase in the
number of guest VMs that resides on a physical host
eventually increases the risk of greater compromise from a
guest VM to another guest VM [18].

The other scenario is, understanding the vital role of the
hypervisor in a virtualized environment makes it the perfect
target for an attacker. Because, once the hypervisor is
compromised it makes it fairly easy to compromise all other
guest VMs that reside on the physical host [18].

6.6 Summary of Security Threats in a VE

The crucial aspect in order to ensure information
security in an organization is to safeguard the
confidentiality, integrity, availability, authentication,
authorization and accountability of network traffic and
business data. In a VE context, these crucial security
aspects can be defined as follows:

1. Confidentiality: to ensure that the network traffic

and business user data in a VE remains protected
while in transit and/or at rest from unauthorized
access.

2. Integrity: to ensure that the network traffic and
business user data in a VE cannot be modified,
damaged, or deleted by unauthorized access.

3. Availability: to ensure that network traffic and
business user data, and services are available when
in need by authorized users.

4. Authentication: a process to ensure the identity of
the authorized user.

5. Authorization: to ensure that the authorized user
has a set of privileges and rights to execute certain
activities.

6. Accountability: to ensure that proper audit trails
and checks are in place to monitor the access
rights of the authorized user.

Table 1 summarizes the impact of security threats on the
various crucial security aspects and the required safeguard
measures towards a safer and secure VE.

Table 1. Impact of security threats on crucial security
aspects and the required safeguard

Security
Threats

Security
Components

Safeguards

Virtualization
Based Malware Integrity

1. Hypervisor
security &
integrity checks.
2. Guest OS
security &
hardening.
3. Virtualized
network security
& isolation.
4. Zero-day real-
time detection of
malicious
activities.
5. Security
policies and
controls in place
6. Automatic
restoration of
guest VMs to a
clean state.

Denial of
Service Availability

Communications
Attack

Confidentiality
Authentication
Authorization

VM Escape

Authentication
Authorization
Accountability

Inter-VM
Attacks and
Network Blind
Spots

Authentication
Authorization

7. VMM Deployment Solutions

In this section, we will elaborate on the most publicly

deployed virtual machine monitors. These include
VMware, Microsoft’s (Hyper-V), Citrix (Xen system),
Kernel-Based Virtual Machine (KVM), and OpenVZ.
Because, KVM, Xen and OpenVZ are currently the open
source VMM versions available for x86 platform, hence,
this section will focus on these three.

7.1 Xen

Xen, is a widely adopted open source industry standard
for virtualization. It can work both in para-virtualization
and the hardware-assisted virtualization modes. It supports
a wide range of guest operating systems including Linux
and Windows. It allows several guest operating systems to
be executed concurrently on the same physical machine.
XenServer is based upon Xen which is currently owned by
Citrix. The Xen system structure consists of the Xen
hypervisor which is the lowest and most privileged
software layer; this layer supports one or more guest
operating systems [19-20].

The first created guest OS on Xen is a privileged VM
known as domain 0 (Dom0) which executes automatically
once the hypervisor boots, receives special management
privileges, and gets direct access to all physical hardware
by default. Any other additional guest OS is known as
domain user (DomU). It is in the DomU where the guest
VM operating systems are executed [19-20]. Figure 8
illustrates the Xen execution model.

International Journal for Information Security Research (IJISR), Volume 3, Issue 3, September 2013

Copyright © 2013, Infonomics Society 341

Figure 8. Xen execution model

The Xen hypervisor runs in Ring-0 and all the other

guest operating systems run in Ring-1, by following this
structure Xen hypervisor decouples the guest OS from
underlying physical machine while holding full control on
system resource. The privileged Dom0 hosts most
unmodified Linux device drivers, hence, playing the role of
a driver domain and takes control of other guest domains.

7.2 KVM

KVM on the other hand is an open source software
fairly recent Linux based virtual machine monitor. It
supports full virtualization on processors with hardware-
assisted virtualization extensions (i.e. Intel or AMD) for
Linux on x86 hardware. It also supports a wide selection of
guest operating systems including Linux and Windows.
KVM consists of a hypervisor (i.e. Loadable Linux Kernel
Module, kvm.ko) this module provides the core
virtualization infrastructure and it has a processor specific
module, kvm-intel.ko or kvm-amd.ko [20]. Figure 9
illustrates the KVM execution model [20].

Figure 9. KVM execution model

KVM also entails a modified version of QEMU which

is emulation software. KVM consists of two main
components: a kernel module and a user space. Kernel
module is responsible for the virtualization of hardware
resources. However, the user space program uses the
/dev/kvm interface to create the guest VM’s address space
and is responsible for I/O’s virtualization with the
assistance of the QEMU to simulate the behavior of I/O.
For example, any I/O request made by the guest operating
system is trapped within the user space and simulated by
QEMU [20].

7.3 OpenVZ

OpenVZ is a Linux-based operating system-level server
virtualization developed by SWsoft. On a single physical
server, OpenVZ creates multiple isolated and secured
operating system instances known as containers or virtual
environments (VEs). Each of these VEs is a stand-alone
server that can be rebooted independently and has its own
root directory. OpenVZ uses a single kernel shared by all its
various VEs. Hence, it is faster and more efficient as it does
not have the overhead of a true hypervisor. Figure 10
depicts the OpenVZ architecture [20].

Figure 10. OpenVZ architecture

The OS that OpenVZ supports for the host is limited to
all Linux distributions. As for the guest OS; it should be the
same OS as the host OS. Hence, in OpenVZ the OS is
virtualized instead of hardware virtualization [20].

7.4 Summary of VMM Deployment Solutions

Table 2 summarizes all the various types of security threats
in a virtualized environment.

Table 2. Summary of VMM deployment solutions

 Xen KVM OpenVZ

Developed by
Uni of

Cambridge
Qumranet Swsoft

Virtualization
Type

Hardware-
assisted and

Para-Virt
Full-Virt OS-Virt

Compatible
Host OS

Linux (few) Linux
All Linux

distros

Compatible
Guest OS

Windows,
Linux &
Solaris

All OS
same as the

host OS

International Journal for Information Security Research (IJISR), Volume 3, Issue 3, September 2013

Copyright © 2013, Infonomics Society 342

8. Conclusion and Future Work

Virtualization is an emerging technology that every
organization is keen to embrace due to the various set of
benefits it provides and to join the hype cycle with others.
Although virtualization brings some value added security
features but those are trivial to overcome the many security
threats that exist in a virtualized environment.

The core element of the overall virtualization technology
is the hypervisor or VMM that is responsible to provide the
isolation among the guest VMs and between the guest VMs
and the host. The hypervisor is capable of monitoring and
controlling the guest VMs, allocating the required physical
resources to the guest VMs and ensuring that the entire
virtualized environment is behaving well.

Therefore, the overall security of a virtualized
environment depends mainly on the level of protection of
the hypervisor. With the ease of guest VM migration among
different virtualized platforms; there should be appropriate
segmentation, change control policies, and security
requirement policies in place.

Besides the mentioned importance of the hypervisor the
protection of the physical host is also important. Some of the
security threats can be solved if the physical host is
configured and maintained in a secure manner.

Hence, the future work towards ensuring a secure
virtualization environment is through the security of the
hypervisor, guest OS and the virtualization infrastructure.
Besides having in place a secure monitoring and
management solution in order to protect various crucial
security aspects of the overall virtualization environment.

This paper presented a range of security threats that
exists today in a virtualized environment. It commenced
with having an understanding of the anatomy of
virtualization, the role of the hypervisor, its different
architecture and then highlighted the various forms of
virtualization and VMM deployment models. It is crucial to
the marketplace to consider the security threats that
accompany virtualization technology to have an efficient
and effective infrastructure in place.

9. References

[1] D. Barrett, and G. Kipper, Virtualization and Forensics: A

Digital Forensic Investigator's Guide to Virtual
Environments, Syngress - Elsevier Inc., 2010.

[2] J. Hoopes, Virtualization for Security, Syngress - Elsevier
Inc., 2009.

[3] A. Newman, A. Patrizio, L. Barrett and A. Goldman,
Understanding the Security Implications of Virtualization,
Internet.com Security eBook, a division of QuinStreet Inc.,
2010.

[4] M. Rosenblum, and T. Garfinkel, Virtual Machine Monitors:
Current Technology and Future Trends, IEEE Computer
Society, Vol.38, No.5, 2005, pp. 39-47.

[5] J. Sahoo, S. Mohapatra, and R. Lath, Virtualization: A Survey
on Concepts, Taxanomy and Associated Security Issues,
IEEE Computer Society, 2010, pp. 222-226.

[6] K. Scarfone, M. Souppaya, and P. Hoffman, Guide to
Security for Full Virtualization Technologies, NIST Special
Publication, 800-125, 2011.

[7] C. Li, A. Raghunathan, N. Jha, Secure Virtual Machine
Execution under an Untrusted Management OS, roc. IEEE
3rd Int’l Conf. Cloud Computing - CLOUD’10, Miami,
Florida, 5-10 July 2010, pp. 172-179.

[8] S.J. Vaughan-Nichols, Virtualization Sparks Security
Concerns in Technology News, IEEE Computer Society,
Vol.41, No.8, 2008, pp. 13-15

[9] L.M. Kaufman, Can a Trusted Environment Provide
Security? IEEE Computer Society, Vol.8, No.1, 2010, pp. 50-
52.

[10] P.A. Karger, and D.R. Safford, I/O for Virtual Machine
Monitors: Security and Performance Issues, IEEE Computer
Society, Vol.6, No.5, 2008, pp. 16-23.

[11] K. Nance, B. Hay, and M. Bishop, Virtual Machine
Introspection: Observation or Interference?, IEEE Computer
Society, Vol.6, No.5, 2008, pp. 32-37.

[12] C. Gebhardt, C. Dallon, and A. Tomlinson, Seperating
Hypervisor Trusted Computing Base Supported by
Hardware, Proc. 5th ACM Workshop on Scalable Trusted
Computing, STC’10, Octboer 4, 2010, Chicage, Illinois,
USA, pp. 79-84.

[13] M. Price, The Paradox of Security in Virtual Environments.
IEEE Computer Society, Vol.41, No.11 ,2008 ,pp. 22-28.

[14] E. Ray and E. Schultz, Virtualization Security, Proc. 5th
Annual Cyber Security and Information Intelligence
Research Workshop, CSIIRW’09, April 13-15, 2009, Oak
Ridge, Tennessee, USA.

[15] G. Collier, D. Plassman, and M. Pegah, Virtualization's Next
Frontier: Security, SIGUCCS’07, October 7–10, 2007,
Orlando, Florida, USA, pp. 34-36.

[16] M. Christodorescu, R. Sailer, D.L. Schales, D. Sgandurra and
D. Zamboni, Cloud Security is not (just) Virtualization
Security, CCSW’09, November 13, 2009, Chicago, Illinois,
USA, pp. 97-102.

[17] A.v. Cleeff, W. Pieters, R. Wieringa and F. van Tiel,
Integrated Assessment and Mitigation of Physical and Digital
Security Threats: Case Studies on Virtualization. Information
Security Technical Report, Elsevier, Vol. 16, No. 3-4, 2011,
pp. 142-149.

[18] Security Guidance for Critical Areas of Focus in Cloud
Computing, ver.3.0, CSA, Cloud Security Alliance, 2011.

[19] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield, Xen and the Art
of Virtualization, SOSP’03, October 19-22, 2003, Bolton
Landing, New York, USA, pp. 164-177.

[20] J. Che, Y. Yu, A Synthetical Performance Evalluation of
OpenVZ, Xen and KVM, APSCC, December 6-10, 2010, pp.
587-594.

International Journal for Information Security Research (IJISR), Volume 3, Issue 3, September 2013

Copyright © 2013, Infonomics Society 343

