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Abstract: Sedghi et al. [28] introduced 𝑆-metric space and established some fixed point theorems for a self-

mapping on a complete S-metric space. In the present paper, we prove some fixed point theorems for surjection 

satisfying various expansive type conditions in the setting of a 𝑆-metric space. The presented theorems extend, 

generalize and improve many existing results in the literature. 
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1. INTRODUCTION 

Metric spaces are very important in mathematics and applied sciences. So, some authors have tried to 

give generalizations of metric spaces in several ways. For example, Gahler [11] and Dhage [7] 

introduced the concepts of 2-metric spaces and D-metric spaces, respectively. Mustafa and Sims [22] 

introduced a new structure of generalized metric spaces which are called G-metric spaces as a 

generalization of metric spaces (𝑋, 𝑑) to develop and introduce a new fixed point theory for various 

mappings in this new structure. Sedghi et al. [27] have introduced 𝐷∗-metric spaces which is a 

probable modification of the definition of D-metric spaces introduced by Dhage [7] and proved some 

basic properties in 𝐷∗-metric spaces, (see [27, 29]).  

Recently, Sedghi et al. [28] have introduced S-metric space. The S-metric space is a space with three 

dimensions. The study of expansive mappings is very interesting research area of fixed point theory. 

The study of expansive mappings is a very interesting research area in fixed point theory. In 1984, 

Wang et.al [32] introduced the concept of expanding mappings and proved some fixed point theorems 

in complete metric spaces. In 1992, Daffer and Kaneko [3] defined an expanding condition for a pair 

of mappings and proved some common fixed point theorems for two mappings in complete metric 

spaces. For more details on expanding mapping and related results we refer the reader to [1, 4, 14-15, 

31, 33-34].  

In our paper, we work in S-metric space. Also, most of these results, under different expansive type 

conditions, use surjective mappings. These results improve and generalized some important known 

results. 

2. PRELIMINARIES 

Following definitions and fundamental results are required for our further use. 

In 1963, Gähler [11] introduced the notion of a 2-metric space as follows.  

Definition 2.1 Let 𝑋 be a nonempty set. A function 𝑑: 𝑋3 → [0, +∞) is said to be a 2-metric on 𝑋 if 

the following conditions hold:  

(d1). For any distinct points 𝑥, 𝑦 ∈ 𝑋 there is 𝑧 ∈ 𝑋 such that 𝑑(𝑥, 𝑦, 𝑧) ≠ 0; 

(d2). 𝑑 𝑥, 𝑦, 𝑧 = 0 if any two elements of the set {𝑥, 𝑦, 𝑧} in X are equal; 
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(d3). 𝑑(𝑥, 𝑦, 𝑧) = 𝑑(𝑥, 𝑧, 𝑦) = 𝑑(𝑦, 𝑥, 𝑧) = 𝑑(𝑧, 𝑥, 𝑦) = 𝑑(𝑦, 𝑧, 𝑥) = 𝑑(𝑧, 𝑦, 𝑥), 

(d4). 𝑑(𝑥, 𝑦, 𝑧) ≤ 𝑑(𝑥, 𝑦, 𝑎) + 𝑑(𝑥, 𝑎, 𝑧) + 𝑑(𝑎, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧, 𝑎 ∈  𝑋. 

The pair (𝑋, 𝑑) is called a 2-metric space. 

Gähler [11] claimed that 2-metric space is a generalization of an ordinary metric space. He mentioned 

in [12] that 𝑑(𝑥, 𝑦, 𝑧) geometrically represents the area of a triangle formed by the points x, y, z ∈ X as 

its vertices. On the other hand, Ha et al. [13] and Sharma [30] found some mathematical flaws in these 

claims. It was demonstrated in [30] that 𝑑(𝑥, 𝑦, 𝑧) does not always represent the area of a triangle 

formed by the points 𝑥, 𝑦, 𝑧 ∈  𝑋. Ha et al. [13] proved that the 2-metric is not sequentially continuous 

in each of its arguments whereas an ordinary metric satisfies this property. 

In order to carry out meaningful studies of fixed point results, Dhage [7] suggested an improvement in 

the basic structure of 2-metric space. 

In 1984, Dhage in his Ph.D. thesis [5] identified condition (d2) as a weakness in Gähler‟s theory of a 

2-metric space. To overcome these problems, he then introduced the concept of a D-metric space. 

Definition 2.2 Let 𝑋 be a nonempty set. A function 𝐷: 𝑋3 → [0, +∞) is said to be a 𝐷-metric on 𝑋 if 

the following conditions hold:  

(D1). 𝐷 𝑥, 𝑦, 𝑧 ≥ 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and equality holds if and only if 𝑥 = 𝑦 = 𝑧; 

(D2). 𝐷(𝑥, 𝑦, 𝑧) = 𝐷(𝑥, 𝑧, 𝑦) = 𝐷(𝑦, 𝑥, 𝑧) = 𝐷(𝑧, 𝑥, 𝑦) = 𝐷(𝑦, 𝑧, 𝑥) = 𝐷(𝑧, 𝑦, 𝑥), 

(D3). 𝐷(𝑥, 𝑦, 𝑧) ≤ 𝐷(𝑥, 𝑦, 𝑎) + 𝐷(𝑥, 𝑎, 𝑧) + 𝐷(𝑎, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧, 𝑎 ∈  𝑋. 

The pair (𝑋, 𝐷) is called a D-metric space. 

It is important to note that condition (d3) and (D2) are equivalent. Condition (d4) and (D3) are also 

equivalent, whereas (d1) and (d2) have been replaced by (D1). Dhage [7] modified condition (d2) to 

obtain the natural non-negativity condition of ordinary metric. Dhage [6] then studied topological 

properties of D-metric space in a series of papers. Naidu et al. [25] proved that the concepts of 

convergent sequences and sequential continuity are not well defined in D-metric spaces. Naidu et al. 

[24] pointed out some drawbacks in the idea of open balls in D-metric space. In 2003, Mustafa and 

Sims [23] identified condition (D3) as a weakness in Dhage‟s theory of D-metric space.  

In 2006, Mustafa and Sims [22] introduced the notion of G-metric space and suggested an important 

generalization of metric space as follows. 

Definition 2.3 Let 𝑋 be a non-empty set. Suppose that a mapping 𝐺: 𝑋3 → [0, +∞) satisfies: 

(G1). 𝐺 𝑥, 𝑦, 𝑧 = 0 if 𝑥 = 𝑦 = 𝑧; 

(G2). 0 < 𝐺 𝑥, 𝑥, 𝑦 , ∀ 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦; 

(G3). 𝐺 𝑥, 𝑥, 𝑦 ≤ 𝐺 𝑥, 𝑦, 𝑧 , ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑦 ≠ 𝑧; 

(G4). 𝐺 𝑥, 𝑦, 𝑧 = 𝐺 𝑥, 𝑧, 𝑦 = 𝐺 𝑦, 𝑥, 𝑧 = 𝐺 𝑧, 𝑥, 𝑦 = 𝐺 𝑦, 𝑧, 𝑥 = 𝐺 𝑧, 𝑦, 𝑥 ; 

(G5). 𝐺 𝑥, 𝑦, 𝑧 ≤ 𝐺 𝑥, 𝑎, 𝑎 + 𝐺 𝑎, 𝑦, 𝑧 , ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 (Rectangle inequality). 

Then the pair (𝑋, 𝐺) is called a generalized 𝐺-metric space or, more specifically, a 𝐺metric space. 

Note that condition (D1) has been replaced with (G1), (G2), and (G3). Condition (D2) is equivalent to 

(G4) and condition (D3) has been replaced by (G5). The deficiency of Dhage‟s theory of D-metric is 

thus corrected. Subsequently, Mustafa and Sims [22] studied some topological properties of G-metric 

space and afterwards some authors have obtained generalized fixed point theorems in the setup of G-

metric space; see for example [21]. 

Unlike in the theory of G-metric space, where condition (D1) was replaced with the three separate 

axioms (G1), (G2), and (G3), Sedghi et al. [27] observed that condition (D1) can be replaced with two 

axioms and thus introduced the notion of a 𝐷∗-metric space as follows. 
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Definition 2.4 Let 𝑋 be a non-empty set. An 𝐷∗-metric on 𝑋 is a function 𝐷∗: 𝑋3 → [0, +∞) that 

satisfies the following conditions, for each 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋, 

(D*1). 𝐷∗ 𝑥, 𝑦, 𝑧 ≥ 0; 

(D*2). 𝐷∗ 𝑥, 𝑦, 𝑧 = 0 if and only if 𝑥 = 𝑦 = 𝑧; 

(D*3). 𝐷∗ 𝑥, 𝑦, 𝑧 = 𝐷∗ 𝑥, 𝑧, 𝑦 = 𝐷∗ 𝑦, 𝑥, 𝑧 = 𝐷∗ 𝑧, 𝑥, 𝑦 = 𝐷∗ 𝑦, 𝑧, 𝑥 = 𝐷∗ 𝑧, 𝑦, 𝑥  

(D*4). 𝐷∗ 𝑥, 𝑦, 𝑧 ≤ 𝐷∗ 𝑥, 𝑦, 𝑎 + 𝐷∗ 𝑎, 𝑧, 𝑧 . 

Then 𝐷∗ is called an 𝐷∗-metric on 𝑋 and (𝑋, 𝐷∗) is called an 𝐷∗-metric space. 

Note that condition (D1) has been replaced with (𝐷∗1) and (𝐷∗2). Condition (D2) and (𝐷∗3) are 

equivalent. Condition (D3) has been replaced with (𝐷∗4). The tetrahedral inequality in D-metric has 

been replaced with the prototypical rectangular inequality adopted by Mustafa and Sims [22]. Every 

G-metric space is a 𝐷∗-metric space. Indeed conditions (G1), (G2), and (G3) imply (𝐷∗1). Axioms 

(G1) and (𝐷∗2) are equivalent. (G4) and (𝐷∗4) are also equivalent, whereas (G4) and (G5) imply 

(𝐷∗4). The converse, however, is false in general; a 𝐷∗-metric space is not necessarily a G-metric 

space. 

Sedghi et al. [28] identified condition (G3) as a peculiar limitation of the G-metric space but classified 

the symmetry condition as a common weakness of both G- and 𝐷∗-metric spaces. To overcome these 

difficulties, Sedghi et al. [28] introduced a new generalized metric space called an S-metric space. 

Definition 2.5 Let 𝑋 be a non-empty set. An S-metric on 𝑋 is a function 𝑆: 𝑋3 → [0, +∞) that 

satisfies the following conditions, for each 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋, 

(S1). 𝑆 𝑥, 𝑦, 𝑧 ≥ 0; 

(S2). 𝑆 𝑥, 𝑦, 𝑧 = 0 if and only if 𝑥 = 𝑦 = 𝑧; 

(S3). 𝑆 𝑥, 𝑦, 𝑧 ≤ 𝑆 𝑥, 𝑥, 𝑎 + 𝑆 𝑦, 𝑦, 𝑎 + 𝑆 𝑧, 𝑧, 𝑎 . 

Then 𝑆 is called an 𝑆-metric on 𝑋 and (𝑋, 𝑆) is called an 𝑆-metric space. 

The following is the intuitive geometric example for 𝑆-metric spaces.  

Example 2.6 ([28], Example 2.4) Let 𝑋 = ℝ2 and 𝑑 be the ordinary metric on 𝑋. Put 𝑆 𝑥, 𝑦, 𝑧 =

 𝑑 𝑥, 𝑦 + 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧)  for all 𝑥, 𝑦 ∈ ℝ2, that is, 𝑆 is the perimeter of the triangle given by 

𝑥, 𝑦, 𝑧. Then 𝑆 is an 𝑆-metric on 𝑋. 

Lemma 2.7 ([28], Lemma 2.5) Let (𝑋, 𝑆) be an S-metric space. Then 𝑆(𝑥, 𝑥, 𝑦) = 𝑆(𝑦, 𝑦, 𝑥) for all 

𝑥, 𝑦 ∈ 𝑋.  

Lemma 2.8 ([9], Lemma 1.6) Let (𝑋, 𝑆)  be an 𝑆-metric space. Then 𝑆 𝑥, 𝑥, 𝑧 ≤ 2𝑆 𝑥, 𝑥, 𝑦 +
𝑆(𝑦, 𝑦, 𝑧) and  𝑆 𝑥, 𝑥, 𝑧 ≤ 2𝑆 𝑥, 𝑥, 𝑦 + 𝑆(𝑧, 𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Definition 2.9 ([28]) Let (𝑋, 𝑆) be an 𝑆-metric space. 

1. A sequence  𝑥𝑛 𝑛=1
∞  is called convergent to 𝑥 in (𝑋, 𝑆), written lim𝑛→+∞ 𝑥𝑛 = 𝑥, if  

lim𝑛→+∞ 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥 = 0. 

2. A sequence  𝑥𝑛  𝑛=1
∞  is called Cauchy in (𝑋, 𝑆) if lim𝑛→+∞ 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑚  = 0. 

3. (𝑋, 𝑆) is called complete if every Cauchy sequence in (𝑋, 𝑆) is a convergent sequence in 

(𝑋, 𝑆). 

From [28, Examples in page 260], we have the following. 

Example 2.10 

1. Let ℝ be the real line. Then 𝑆 𝑥, 𝑦, 𝑧 =  𝑥 − 𝑧 +  𝑦 − 𝑧  for all 𝑥, 𝑦, 𝑧 ∈ ℝ, is an 𝑆-metric 

on ℝ. This 𝑆-metric is called the usual 𝑆-metric on ℝ. Furthermore, the usual 𝑆-metric space 

ℝ is complete. 
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2. Let 𝑌 be a non-empty set of ℝ. Then 𝑆 𝑥, 𝑦, 𝑧 =  𝑥 − 𝑧 +  𝑦 − 𝑧  for all 𝑥, 𝑦, 𝑧 ∈ 𝑌, is an S-

metric on 𝑌. If 𝑌 is a closed subset of the usual metric space ℝ, then the S-metric space Y is 

complete. 

Lemma 2.11 ([28], Lemma 2.11) Let (𝑋, 𝑆) be an S-metric space. If the sequence  𝑥𝑛 𝑛=1
∞  in 𝑋 

converges to 𝑥, then 𝑥 is unique. 

Lemma 2.12 ([28], Lemma 2.12) Let (𝑋, 𝑆) be an S-metric space. If lim𝑛→+∞ 𝑥𝑛 = 𝑥 and 

 lim𝑛→+∞ 𝑦𝑛 = 𝑦,  then lim𝑛→+∞ 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑦𝑛 = 𝑆 𝑥, 𝑥, 𝑦 . 

Remark 2.13 [9] It is easy to see that every 𝐷∗-metric is S-metric, but in general the converse is not 

true, see the following example. 

Example 2.14 [9] Let 𝑋 = ℝ𝑛  and   .   a norm on 𝑋, then 𝑆 𝑥, 𝑦, 𝑧 =  𝑦 + 𝑧 − 2𝑥 +  𝑦 − 𝑧  is S-

metric on X, but it is not 𝐷∗-metric because it is not symmetric. 

The following lemma shows that every metric space is an S-metric space. 

Lemma 2.15 ([9], Lemma 1.10) Let (𝑋, 𝑑) be a metric space. Then we have 

1. 𝑆𝑑 𝑥, 𝑦, 𝑧 = 𝑑 𝑥, 𝑧 + 𝑑 𝑦, 𝑧  for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 is an S-metric on 𝑋. 

2. lim𝑛→+∞ 𝑥𝑛 = 𝑥 in (𝑋, 𝑑) if and only if lim𝑛→+∞ 𝑥𝑛 = 𝑥 in (𝑋, 𝑆𝑑). 

3.  𝑥𝑛 𝑛=1
∞  is Cauchy in (𝑋, 𝑑) if and only if  𝑥𝑛 𝑛=1

∞  is Cauchy in (𝑋, 𝑆𝑑). 

4. (𝑋, 𝑑) is complete if and only if (𝑋, 𝑆𝑑) is complete.  

The following example ([10], example 1.9) proves that the inversion of Lemma 2.15 does not hold. 

Example 2.16 ([9], Example 1.10) Let 𝑋 = ℝ and let 𝑆 𝑥, 𝑦, 𝑧 =  𝑦 + 𝑧 − 2𝑥 +  𝑦 − 𝑧  for all 

𝑥, 𝑦, 𝑧 ∈ 𝑋. By [28, Example (1), page 260], (𝑋, 𝑆) is an S-metric space. Dung et al. [10] proved that 

there does not exist any metric 𝑑 such that 𝑆 𝑥, 𝑦, 𝑧 = 𝑑 𝑥, 𝑧 + 𝑑 𝑦, 𝑧  for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Indeed, 

suppose to the contrary that there exists a metric 𝑑 with 𝑆 𝑥, 𝑦, 𝑧 = 𝑑 𝑥, 𝑧 + 𝑑 𝑦, 𝑧  for all 𝑥, 𝑦, 𝑧 ∈

𝑋.Then 𝑑 𝑥, 𝑧 =
1

2
𝑆 𝑥, 𝑥, 𝑧 = 2 𝑥 − 𝑧  and 𝑑 𝑥, 𝑦 =

1

2
𝑆 𝑥, 𝑦, 𝑦 = 2 𝑥 − 𝑦  for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. It 

is a contradiction. 

In 2012, Sedghi et al. [28] asserted that an S-metric is a generalization of a G-metric, that is, every G-

metric is an S-metric, see [28, Remarks 1.3] and [28, Remarks 2.2]. The Example 2.1 and Example 

2.2 of Dung et al. [10] shows that this assertion is not correct. Moreover, the class of all S-metrics and 

the class of all G-metrics are distinct. 

Example 2.17 (see [10]) There exists a G-metric which is not an S-metric. 

Proof Let 𝑋 be the G-metric space in ([22], Example 1). Then we have 

                              2 = 𝐺(𝑎, 𝑏, 𝑏) > 1 = 𝐺(𝑎, 𝑎, 𝑏)  +  𝐺(𝑏, 𝑏, 𝑏)  +  𝐺(𝑏, 𝑏, 𝑏). 

This proves that G is not an S-metric on X. 

Example 2.18 (see [10]) There exists an S-metric which is not a G-metric. 

Proof Let (𝑋, 𝑆) be the S-metric space in Example 2.16. We have 

                               𝑆 1,0,2 =   0 + 2 − 2 +  0 − 2  =  2. 

                               𝑆 2,0,1 =   0 + 1 − 4 +  0 − 1  = 4. 

Then 𝑆 1,0,2 ≠ 𝑆 2,0,1  This proves that S is not a G-metric. 

3. MAIN RESULT 

We begin with following some lemmas. 

Lemma 3.1 Let (𝑋, S) be a 𝑆-metric space and let  𝑥𝑘 𝑘=0
𝑛 ⊂ 𝑋. Then 

                              𝑆 𝑥0 , 𝑥0 , 𝑥𝑛 ≤ 2  𝑆 𝑥𝑖 , 𝑥𝑖 , 𝑥𝑖+1 
𝑛−2
𝑖=0 + 𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛                                 (3.1) 
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Proof: By the third condition of S-metric, we get 

                       𝑆 𝑥0 , 𝑥0 , 𝑥𝑛 ≤ 2𝑆 𝑥0 , 𝑥0 , 𝑥1 + 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥1                                                            (3.2) 

Also, 

                       𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥1 ≤ 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛 + 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛 + 𝑆 𝑥1 , 𝑥1 , 𝑥𝑛  

                                             = 𝑆 𝑥1 , 𝑥1 , 𝑥𝑛                                                               

and 

                        𝑆 𝑥1 , 𝑥1 , 𝑥𝑛 ≤ 𝑆 𝑥1 , 𝑥1 , 𝑥1 + 𝑆 𝑥1 , 𝑥1 , 𝑥1 + 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥1               

                                             = 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥1                                                                 

Combining above two inequalities, we obtain 

                                         𝑆 𝑥1 , 𝑥1 , 𝑥𝑛 = 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥1   

Thus, from (3.2), we have 

                         𝑆 𝑥0 , 𝑥0 , 𝑥𝑛 ≤ 2𝑆 𝑥0 , 𝑥0 , 𝑥1 + 𝑆 𝑥1 , 𝑥1 , 𝑥𝑛  

Again  

                         𝑆 𝑥1 , 𝑥1 , 𝑥𝑛 ≤ 2𝑆 𝑥1 , 𝑥1 , 𝑥2 + 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥2  

                                              ≤ 2𝑆 𝑥1 , 𝑥1 , 𝑥2 + 𝑆 𝑥2 , 𝑥2 , 𝑥𝑛  

Hence 

                         𝑆 𝑥0 , 𝑥0 , 𝑥𝑛 ≤ 2𝑆 𝑥0 , 𝑥0 , 𝑥1 + 2𝑆 𝑥1 , 𝑥1 , 𝑥2 + 𝑆 𝑥2 , 𝑥2 , 𝑥𝑛  

Proceeding this way, we have 

                         𝑆 𝑥0 , 𝑥0 , 𝑥𝑛 ≤ 2  𝑆 𝑥𝑖 , 𝑥𝑖 , 𝑥𝑖+1 
𝑛−2
𝑖=0 + 𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛  

From Lemma 3.1, we deduce the following result. 

Lemma 3.2 Let  𝑋, 𝑆  be a 𝑆-metric space and let  𝑥𝑛 𝑛=1
∞  be a sequence of points of  𝑋 such that 

                                            𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 ≤ 𝜆𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛                                                    (3.3) 

where 𝜆 ∈   0  , 1   and 𝑛 =  1, 2, . . .. Then  𝑥𝑛 𝑛=1
∞  is a Cauchy sequence in  𝑋, 𝑆 . 

Proof From (3.3), by induction, we have  

                           𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 ≤ 𝜆𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛  

                                                     ≤ 𝜆2𝑆 𝑥𝑛−2 , 𝑥𝑛−2 , 𝑥𝑛−1  

                                                     ≤ ⋯ ≤ 𝜆𝑛𝑆 𝑥0 , 𝑥0 , 𝑥1                                                                   (3.4) 

Let 𝑚 > 𝑛. It follows that 

                              𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑚  ≤ 2  𝑆 𝑥𝑖 , 𝑥𝑖 , 𝑥𝑖+1 
𝑚−2
𝑖=𝑛 + 𝑆 𝑥𝑚−1 , 𝑥𝑚−1 , 𝑥𝑚   

                                                     ≤ 2  𝜆𝑖𝑆 𝑥0 , 𝑥0 , 𝑥1 
𝑚−2
𝑖=𝑛 + 𝜆𝑚−1𝑆 𝑥0 , 𝑥0 , 𝑥1  

                                                     ≤ 2𝜆𝑛  1 + 𝜆 + 𝜆2 + ⋯…… .  𝑆 𝑥0 , 𝑥0 , 𝑥1  

                                                     ≤
2𝜆𝑛

1−𝜆
𝑆 𝑥0 , 𝑥0 , 𝑥1                                                                         (3.5) 

It is noted that 𝜆 < 1. Assume that 𝑆 𝑥0 , 𝑥0 , 𝑥1 > 0. By taking limit as 𝑚, 𝑛 → +∞ in above 

inequality we get 

                                        𝑙𝑖𝑚𝑛 ,𝑚→+∞ 𝑆 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  = 0.                                                                  (3.6) 

So  𝑥𝑛 𝑛=1
∞  is a Cauchy sequence. Also, if 𝑆 𝑥0 , 𝑥0 , 𝑥1 = 0, then 𝑆 𝑥𝑛 , 𝑥𝑚 , 𝑥𝑚  = 0 for all 𝑚 >  𝑛 

and hence  𝑥𝑛 𝑛=1
∞  is a Cauchy sequence in 𝑋. 

Now, our first main results as follows. 
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Theorem 3.3 Let (X, S) be a complete S-metric space and 𝑇: 𝑋 → 𝑋 be a surjection. Suppose that 

there exist a constant 𝑎 > 1 such that  

                                                     𝑆 𝑇𝑥, 𝑇𝑥, 𝑇𝑦 ≥ 𝑎 𝑆 𝑥, 𝑥, 𝑦                                                          (3.7) 

∀ 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point in 𝑋. 

Proof: Let 𝑥0 ∈ 𝑋 be arbitrary. Since 𝑇 is onto, there is an element 𝑥1 ∈ 𝑋 satisfying  𝑥1 ∈ 𝑇−1 𝑥0 . 
By the same way, we can find  𝑥𝑛 ∈ 𝑇−1 𝑥𝑛−1  for 𝑛 = 2,3,4, ….. If 𝑆 𝑥𝑚−1 , 𝑥𝑚−1 , 𝑥𝑚  = 0 for 

some 𝑚, then 𝑥𝑚−1 = 𝑥𝑚  and  𝑥𝑚 ∈ 𝑇−1 𝑥𝑚−1  implies   𝑇𝑥𝑚 = 𝑥𝑚−1 = 𝑥𝑚  and so  𝑥𝑚  is a fixed 

point of 𝑇. Without loss of generality, we can suppose that 𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛 > 0, that is, 𝑥𝑛 ≠ 𝑥𝑛−1 

for every 𝑛. From (3.7), we have  

                                    𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛 = 𝑆 𝑇𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛+1  

                                                                  ≥ 𝑎 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1  

So, it must be the case that 

                                      𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 ≤
1

𝑎
𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛                                                          (3.9) 

where  
1

𝑎
< 1. 

Let 𝜆 =
1

𝑎
. Then 0 < 𝜆 < 1 and  

                                           𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 ≤ 𝜆𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛                                                   (3.10) 

By Lemma 3.2,  xn n=1
∞  is a Cauchy sequence. By completeness of  𝑋, 𝑆 , there exists 𝑥∗ ∈ 𝑋 such 

that 𝑥𝑛 → 𝑥∗. Now 𝑇 is surjection. So there exists a point 𝑝 ∈ 𝑋 such that 𝑝 ∈ 𝑇−1 𝑥∗  and so 

𝑥∗ = 𝑇𝑝. Consider from (3.7), we have 

                                      𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥∗ = 𝑆 𝑇𝑥𝑛+1 , 𝑇𝑥𝑛+1 , 𝑇𝑝  

                                                            ≥ 𝑎𝑆 𝑥𝑛+1 , 𝑥𝑛+1 , 𝑝                                                             (3.11) 

Taking the limit as 𝑛 → +∞, we have 

                                                         0 ≥ 𝑎𝑆 𝑥∗, 𝑥∗, 𝑝                                         

which implies that 𝑆 𝑥∗, 𝑥∗, 𝑝 = 0, since 𝑎 > 1. Therefore 𝑝 =  𝑥∗ and hence 𝑇𝑥∗ =  𝑥∗.  

Now, we show that uniqueness. Suppose that  𝑥⋆ ≠ 𝑦⋆ is also another fixed point of 𝑇, then from 

condition (3.7), we obtain 

                                      𝑆 𝑥⋆, 𝑥⋆, 𝑦⋆ = 𝑆 𝑇𝑥⋆, 𝑇𝑥⋆, 𝑇𝑦⋆  

                                                            ≥ a𝑆 𝑥⋆, 𝑥⋆, 𝑦⋆  

and therefore 𝑆 𝑥⋆, 𝑥⋆, 𝑦⋆ = 0. So 𝑥⋆ = 𝑦⋆. This completes the proof. 

Corollary 3.4 Let (X, S) be a complete S-metric space and 𝑇: 𝑋 → 𝑋 be a surjection. Suppose that 

there exist a positive integer 𝑛 and a real number 𝑎 > 1 such that  

                                             𝑆 𝑇𝑛𝑥, 𝑇𝑛𝑥, 𝑇𝑛𝑦 ≥ 𝑎 𝑆 𝑥, 𝑥, 𝑦                                                         (3.12) 

∀ 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a unique fixed point in 𝑋. 

Proof From Theorem 3.3, 𝑇𝑛  has a fixed point 𝑥⋆. But 𝑇𝑛 𝑇𝑥⋆ = 𝑇 𝑇𝑛𝑥⋆ = 𝑇𝑥⋆, So 𝑇𝑥⋆ is also a 

fixed point of 𝑇𝑛 . Hence 𝑇𝑥⋆ = 𝑥⋆, 𝑥⋆ is a fixed point of 𝑇. Since the fixed point of 𝑇 is also fixed 

point of  𝑇𝑛  , the fixed point of 𝑇 is unique. 

Theorem 3.5 Let (𝑋, 𝑆) be a complete 𝑆-metric space. Assume that the mapping 𝑇 ∶ 𝑋 → 𝑋 is 

surjective and satisfies the condition 

                                 𝑆 𝑇𝑥, 𝑇𝑥, 𝑇𝑦 ≥ 𝑎𝑆 𝑥, 𝑥, 𝑦 + 𝑏𝑆 𝑥, 𝑥, 𝑇𝑥 + 𝑐𝑆 𝑦, 𝑦, 𝑇𝑦                            (3.13) 

where 𝑎, 𝑏, 𝑐, 𝑑 are non-negative constants with 𝑎 + 𝑏 + 𝑐 > 1. Then 𝑇 has a fixed point in 𝑋. 

Proof: Let 𝑥0 ∈ 𝑋 be arbitrary. Similar to the proof of Theorem 3.2, we can obtain a 

sequence  𝑥𝑛 𝑛=1
∞  such that 𝑥𝑛 ∈ 𝑇−1 𝑥𝑛−1  for  𝑛 = 2,3, ... If 𝑆 𝑥𝑚−1 , 𝑥𝑚−1 , 𝑥𝑚  = 0 for some 𝑚, 
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then 𝑥𝑚−1 = 𝑥𝑚  and  𝑥𝑚 ∈ 𝑇−1 𝑥𝑚−1  implies   𝑇𝑥𝑚 = 𝑥𝑚−1 = 𝑥𝑚  and so  𝑥𝑚  is a fixed point of 𝑇. 

Without loss of generality, we can suppose that 𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛 > 0, that is, 𝑥𝑛 ≠ 𝑥𝑛−1 for every 𝑛. 

From (3.13), we have  

     𝑆 𝑥𝑛−1 , 𝑥𝑛−1, 𝑥𝑛 = 𝑆 𝑇𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛+1  

                                  ≥ 𝑎𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 + 𝑏𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑇𝑥𝑛 + 𝑐𝑆 𝑥𝑛+1, 𝑥𝑛+1 , 𝑇𝑥𝑛+1  

                                  = 𝑎𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 + 𝑏𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛−1 + 𝑐𝑆 𝑥𝑛+1 , 𝑥𝑛+1 , 𝑥𝑛  

Since 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛−1 = 𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛  and 𝑆 𝑥𝑛+1 , 𝑥𝑛+1 , 𝑥𝑛 = 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 , therefore 

                𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛 ≥ 𝑎𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 + 𝑏𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛 + 𝑐𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1  

So, it must be the case that 

                              1 − 𝑏 𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛 ≥ (𝑎 + 𝑐)𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1                                          (3.14) 

If 𝑎 + 𝑐 = 0, then 𝑏 > 1. The above inequality implies that a negative number is greater than or equal 

to zero. That is impossible. So, 𝑎 + 𝑐 ≠ 0 and 1 − 𝑏 > 0. Therefore, 

                                          𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 ≤
1−𝑏

𝑎+𝑐
𝑆  𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛                                               (3.15) 

where 0 <
1−𝑏

𝑎+𝑐
< 1. Let 𝜆 =

1−𝑏

𝑎+𝑐
. Then 0 < 𝜆 < 1 and  

                                         𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 ≤ 𝜆𝑆  𝑥𝑛−1, 𝑥𝑛−1 , 𝑥𝑛                                                    (3.16) 

By Lemma 3.2,  𝑥𝑛 𝑛=1
∞  is a Cauchy sequence. By completeness of  𝑋, 𝑆 , there exists 𝑥∗ ∈ 𝑋 such 

that 𝑥𝑛 → 𝑥∗. Now 𝑇 is surjective mapping. So there exists a point 𝑝 ∈ 𝑋 such that 𝑝 ∈ 𝑇−1 𝑥∗  and 

so 𝑥∗ = 𝑇𝑝. Consider from (3.13), we have 

                𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥∗ = 𝑆 𝑇𝑥𝑛+1 , 𝑇𝑥𝑛+1 , 𝑇𝑝  

                                      ≥ 𝑎𝑆 𝑥𝑛+1 , 𝑥𝑛+1 , 𝑝 + 𝑏𝑆 𝑥𝑛+1, 𝑥𝑛+1 , 𝑇𝑥𝑛+1 + 𝑐𝑆 𝑝, 𝑝, 𝑇𝑝  

                                      ≥ 𝑎𝑆 𝑥𝑛+1 , 𝑥𝑛+1 , 𝑝 + 𝑏𝑆 𝑥𝑛+1, 𝑥𝑛+1 , 𝑥𝑛 + 𝑐𝑆 𝑝, 𝑝, 𝑥∗     

Taking the limit as 𝑛 → +∞, we have 

                                   0 ≥ 𝑎𝑆 𝑥∗, 𝑥∗, 𝑝 + 𝑏𝑆 𝑥∗, 𝑥∗, 𝑥∗ + 𝑐𝑆 𝑝, 𝑝, 𝑥∗  

                                      =  𝑎 + 𝑐 𝑆 𝑝, 𝑝, 𝑥∗ =  𝑎 + 𝑐 𝑆 𝑥∗, 𝑥∗, 𝑝  

So, 

                                            0 ≥  𝑎 + 𝑐 𝑆 𝑝, 𝑝, 𝑥∗ .                                          

which implies that 𝑆 𝑝, 𝑝, 𝑥∗ = 0, since 𝑎 + 𝑐 ≠ 0. Therefore 𝑝 =  𝑥∗ and hence 𝑇𝑥∗ =  𝑥∗. 

Remark 3.6 Setting 𝑏 = 𝑐 = 0 in Theorem 3.4, we can obtain the Theorem 3.2. 

Theorem 3.7 Let  𝑋, 𝑆  be a complete S-metric space and 𝑇: 𝑋 → 𝑋 is a continuous surjection. 

Suppose that there exists a constant 𝑘 > 1 such that 

                  𝑆 𝑇𝑥, 𝑇𝑥, 𝑇𝑦 ≥ 𝑘𝑢, for some 𝑢 ∈  𝑆 𝑥, 𝑥, 𝑦 , 𝑆 𝑥, 𝑥, 𝑇𝑥 , 𝑆(𝑦, 𝑦, 𝑇𝑦)                        (3.17) 

∀ 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a fixed point. 

Proof: Let 𝑥0 ∈ 𝑋 be arbitrary. Similar to the proof of Theorem 3.2, we can obtain a 

sequence  𝑥𝑛 𝑛=1
∞  such that 𝑥𝑛 ∈ 𝑇−1 𝑥𝑛−1  for  𝑛 = 2,3, ... If 𝑆 𝑥𝑚−1 , 𝑥𝑚−1 , 𝑥𝑚  = 0 for some 𝑚, 

then 𝑥𝑚−1 = 𝑥𝑚  and  𝑥𝑚 ∈ 𝑇−1 𝑥𝑚−1  implies   𝑇𝑥𝑚 = 𝑥𝑚−1 = 𝑥𝑚  and so  𝑥𝑚  is a fixed point of 𝑇. 

Without loss of generality, we can suppose that 𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛 > 0, that is, 𝑥𝑛 ≠ 𝑥𝑛−1 for every 𝑛. 

From (3.17), we have  

                                  𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛 = 𝑆 𝑇𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛+1 ,  ≥ 𝜆𝑢𝑛                                          (3.18) 

where         𝑢𝑛 ∈  𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 , 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑇𝑥𝑛 , 𝑆 𝑥𝑛+1 , 𝑥𝑛+1 , 𝑇𝑥𝑛+1   

                        =  𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 , 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛−1 , 𝑆 𝑥𝑛+1 , 𝑥𝑛+1, 𝑥𝑛   

                        =  𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 , 𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛 , 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1   
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                       =  𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 , 𝑆 𝑥𝑛−1 , 𝑥𝑛−1, 𝑥𝑛   

Now we have to consider the following three cases. 

If 𝑢𝑛 = 𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛 , then  

                               𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛 ≥ 𝜆𝑆 𝑥𝑛 , 𝑥𝑛−1 , 𝑥𝑛−1            

which implies that 𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛 = 0, that is, 𝑥𝑛−1 = 𝑥𝑛 .  This is a contradiction.                    

If 𝑢𝑛 = 𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 , then  

                               𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛 ≥ 𝑘𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1       

and so          

                               𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 ≤
1

𝑘
𝑆 𝑥𝑛−1 , 𝑥𝑛−1, 𝑥𝑛     

Let 𝜆 =
1

𝑘
< 1.Then  

                               𝑆 𝑥𝑛 , 𝑥𝑛 , 𝑥𝑛+1 ≤ 𝜆𝑆 𝑥𝑛−1 , 𝑥𝑛−1 , 𝑥𝑛  

by Lemma 3.2,   𝑥𝑛 𝑛=1
∞  is a Cauchy sequence in 𝑋. Since (𝑋, 𝑆) is a complete, the sequence   𝑥𝑛 𝑛=1

∞  

is converges to a point 𝑥⋆ ∈ 𝑋. Since 𝑇 is  continuous, it is clear that 𝑥⋆ is a fixed point of 𝑇. This 

completes the proof. 

Example 3.8 Let 𝑋 = ℝ, then 𝑆 𝑥, 𝑦, 𝑧 =  𝑥 − 𝑧 +  𝑦 − 𝑧  for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. By [28, Example (1), 

page 260],  𝑋, 𝑆  is an S-metric space. Define 𝑇: 𝑋 → 𝑋 by 𝑇𝑥 =
5

2
𝑥. Obviously, T is continuous 

surjective map on X. Now 

                            𝑆 𝑇𝑥, 𝑇𝑥, 𝑇𝑦 = 2 𝑇𝑥 − 𝑇𝑦  

                                                   = 5  𝑥 − 𝑦   

                                                   ≥ 𝑎𝑆 𝑥, 𝑥, 𝑦  

 So for a =
12

5
> 1 and all the conditions of Theorem 3.2 are satisfied. Therefore x⋆ = 0 is the unique 

fixed point of  T. 

4. COMMON FIXED POINT THEOREMS 

Now, we give a common fixed point theorem of two weakly compatible mappings in S-metric spaces. 

In [17] Jungck introduced the concept of commuting maps. In [18] Jungck introduced the concept of 

compatible mappings which generalize the concept of commuting maps. Jungck in [19] further 

generalized the concept of weakly compatible maps as follows.  

Let 𝑆 and 𝑇 be two self-mappings on a nonempty set 𝑋. Then 𝑆 and 𝑇 are said to be weakly 

compatible if they commute at all of their coincidence points; that is, 𝑆𝑥 =  𝑇𝑥 for some 𝑥 ∈  𝑋 and 

then 𝑆𝑇𝑥 = 𝑇𝑆𝑥. 

Theorem 4.1 Let  𝑋, 𝑆  be a complete S-metric space. Let 𝑓 and 𝑇 be two self-mappings of 𝑋 and 

𝑇(𝑋) ⊆ 𝑓(𝑋). Suppose that there exists a constant 𝑘 > 1 such that  

                                                     𝑆(𝑓𝑥, 𝑓𝑥, 𝑓𝑦) ≥ 𝑘𝑆(𝑇𝑥, 𝑇𝑥, 𝑇𝑦)                                                   (4.1) 

 ∀ 𝑥, 𝑦 ∈ 𝑋. If one of the subspaces 𝑇(𝑋) or 𝑓(𝑋) is complete, then 𝑓 and 𝑇 have a unique point of 

coincidence in 𝑋. Moreover, if 𝑓 and 𝑇 are weakly compatible, then 𝑓 and 𝑇 have a unique common 

fixed point in 𝑋. 

Proof: Let 𝑥0 ∈ 𝑋. Since 𝑇(𝑋) ⊆ 𝑓(𝑋), choose 𝑥1 ∈ 𝑋 such that 𝑦1 = 𝑓𝑥1 = 𝑇𝑥0. In general, choose 

𝑥𝑛+1 ∈ 𝑋 such that 𝑦𝑛+1 = 𝑓𝑥𝑛+1 = 𝑇𝑥𝑛 . Now by (4.1), we have 

                            𝑆 𝑦𝑛 , 𝑦𝑛 , 𝑦𝑛+1 = 𝑆 𝑓𝑥𝑛 , 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1   

                                                      ≥ 𝑘𝑆 𝑇𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛+1 = 𝑘𝑆 𝑦𝑛+1 , 𝑦𝑛+1 , 𝑦𝑛+2   

and so             
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                             𝑆 𝑦𝑛+1 , 𝑦𝑛+1 , 𝑦𝑛+2 ≤
1

𝑘  
𝑆 𝑦𝑛 , 𝑦𝑛 , 𝑦𝑛+1 = 𝜆𝑆 𝑦𝑛 , 𝑦𝑛 , 𝑦𝑛+1                               (4.2)                 

where =
1

𝑘  
< 1 . Then by Lemma 3.2,   𝑥𝑛 𝑛=1

∞  is a Cauchy sequence. Since 𝑇(𝑋) ⊆ 𝑓(𝑋) and  𝑇(𝑋) 

or 𝑓(𝑋) is a complete subspace of 𝑋. Then (𝑓(𝑋), 𝑆) is complete S-metric space and so the sequence 
 𝑦𝑛  =  𝑇𝑥𝑛−1  ⊆ 𝑓(𝑋)  is converges in the S-metric space (𝑓(𝑋), 𝑆) , that is, there exists 𝑧⋆ ∈ 𝑋 

such that   

                                           lim𝑛→+∞ 𝑆 𝑦𝑛 , 𝑦𝑛 , 𝑧⋆ = 0.  

Consequently, we can find 𝑢 ∈ 𝑋 such that 𝑓𝑢 = 𝑧⋆. Now to show that 𝑇𝑢 = 𝑧⋆. From (4.1), we have  

                                          𝑆 𝑇𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑢 ≤
1

𝑘
𝑆 𝑓𝑥𝑛 , 𝑓𝑥𝑛 , 𝑓𝑢                                                       (4.3)                 

Taking limit as 𝑛 → +∞ in the above inequality, we get  

                                                𝑆 𝑧⋆, 𝑧⋆, 𝑇𝑢 ≤
1

𝑘
𝑆 𝑧⋆, 𝑧⋆, 𝑓𝑢 = 0, 

This implies that 𝑆 𝑧⋆, 𝑧⋆, 𝑇𝑢 = 0 and so 𝑇𝑢 = 𝑧⋆. Therefore, 𝑓𝑢 = 𝑇𝑢 = 𝑧⋆. Since 𝑓 and 𝑇 be 

weakly compatible, 𝑓𝑇𝑢 = 𝑇𝑓𝑢, that is, 𝑓𝑧⋆ = 𝑇𝑧⋆.  

Now we show that 𝑧⋆ is a common fixed point of 𝑓 and 𝑇. From condition (4.1) 

                                          𝑆 𝑓𝑥𝑛 , 𝑓𝑥𝑛 , 𝑓𝑧⋆ ≥ 𝑘𝑆 𝑇𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑧⋆,    

Proceeding to the limit as 𝑛 → +∞, we have 𝑆 𝑧⋆, 𝑧⋆, 𝑓𝑧⋆ ≥ 𝑘𝑆 𝑧⋆, 𝑧⋆, 𝑇𝑧⋆ = 𝑘𝑆 𝑧⋆, 𝑧⋆, 𝑓𝑧⋆ , 
which implies that 𝑆 𝑧⋆, 𝑧⋆, 𝑓𝑧⋆ = 0. Hence 𝑓𝑧⋆ = 𝑧⋆  and so 𝑓𝑧⋆ = 𝑇𝑧⋆ = 𝑧⋆. 

Finally, assume 𝑧⋆ ≠ 𝑤⋆ is also another common fixed point of 𝑓 and 𝑇. From (4.1), we get 

                                      𝑆  𝑧⋆, 𝑧⋆, 𝑤⋆ = 𝑆  𝑓𝑧⋆, 𝑓𝑧⋆, 𝑓𝑤⋆    

                                                             ≥ 𝑘𝑆 𝑇𝑧⋆, 𝑇𝑧⋆, 𝑇𝑤⋆  

                                                             = 𝑘𝑆  𝑧⋆, 𝑧⋆, 𝑤⋆  

This is true only when 𝑆  𝑧⋆, 𝑧⋆, 𝑤⋆ = 0. So z⋆ = w⋆. Hence 𝑓 and  𝑇 have a unique fixed point in 𝑋. 

This completes the proof. 

Theorem 4.2 Let  𝑋, 𝑆  be a complete S-metric space. Let 𝑓 and 𝑇 be two self-mappings of 𝑋 

and 𝑇(𝑋) ⊆ 𝑓(𝑋). Suppose that 𝑎, 𝑏, 𝑐 ≥ 0 with 𝑎 + 𝑏 + 𝑐 > 1 such that  

                          𝑆(𝑓𝑥, 𝑓𝑥, 𝑓𝑦) ≥ 𝑎𝑆 𝑇𝑥, 𝑇𝑥, 𝑇𝑦 + 𝑏𝑆 𝑇𝑥, 𝑇𝑥, 𝑓𝑥 + 𝑐𝑆(𝑇𝑦, 𝑇𝑦, 𝑓𝑦)                    (4.4)                 

∀ 𝑥, 𝑦 ∈ 𝑋. If one of the subspaces 𝑇(𝑋) or 𝑓(𝑋) is 𝑝𝑏 -complete, then 𝑓 and 𝑇 have a point of 

coincidence in 𝑋.  

Moreover, if 𝑎 > 1, then point of coincidence is unique. If 𝑓 and 𝑇 be weakly compatible and 𝑎 > 1, 
then  𝑓 and 𝑇 have a unique common fixed point in 𝑋.  

Proof: Let 𝑥0 ∈ 𝑋. Since 𝑇(𝑋) ⊆ 𝑓(𝑋), choose 𝑥1 ∈ 𝑋 such that 𝑦1 = 𝑓𝑥1 = 𝑇𝑥0. In general, choose 

𝑥𝑛+1 ∈ 𝑋 such that 𝑦𝑛+1 = 𝑓𝑥𝑛+1 = 𝑇𝑥𝑛 . Now by (4.4), we have 

              𝑆 𝑦𝑛 , 𝑦𝑛 , 𝑦𝑛+1 = 𝑆 𝑓𝑥𝑛 , 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1  

                                        ≥ 𝑎𝑆 𝑇𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑥𝑛+1 + 𝑏𝑆 𝑇𝑥𝑛 , 𝑇𝑥𝑛 , 𝑓𝑥𝑛  

                                       +𝑐𝑆(𝑇𝑥𝑛+1 , 𝑇𝑥𝑛+1, 𝑓𝑥𝑛+1)  

                                       = 𝑎𝑆 𝑦𝑛+1 , 𝑦𝑛+1 , 𝑦𝑛+2 + 𝑏𝑆 𝑦𝑛+1 , 𝑦𝑛+1 , 𝑦𝑛  

                                       +𝑐𝑆(𝑦𝑛+2 , 𝑦𝑛+2, 𝑦𝑛+1) 

                                       = 𝑎𝑆 𝑦𝑛+1 , 𝑦𝑛+1 , 𝑦𝑛+2 + 𝑏𝑆 𝑦𝑛 , 𝑦𝑛 , 𝑦𝑛+1  

                                       +𝑐𝑆(𝑦𝑛+1 , 𝑦𝑛+1, 𝑦𝑛+2) (as 𝑆 𝑥, 𝑥, 𝑦 = 𝑆(𝑦, 𝑦, 𝑥)) 

and so 

                           1 − 𝑏 𝑆 𝑦𝑛 , 𝑦𝑛 , 𝑦𝑛+1 ≥  𝑎 + 𝑐 𝑆 𝑦𝑛+1 , 𝑦𝑛+1 , 𝑦𝑛+2  
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If 𝑎 + 𝑐 = 0, then 𝑏 > 1. The above inequality implies that a negative number is greater than or equal 

to zero. That is impossible. So, 𝑎 + 𝑐 ≠ 0 and 1 − 𝑏 > 0. Therefore, 

                                       𝑆 𝑦𝑛+1 , 𝑦𝑛+1 , 𝑦𝑛+2 ≤ 𝜆𝑆 𝑦𝑛 , 𝑦𝑛 , 𝑦𝑛+1                                                      (4.5)                 

where 𝜆 =
1−𝑏

𝑎+𝑐 
< 1. Then by Lemma 3.2,   𝑥𝑛 𝑛=1

∞  is a Cauchy sequence. Since 𝑇(𝑋) ⊆ 𝑓(𝑋) and  

𝑇(𝑋) or 𝑓(𝑋) is a complete subspace of 𝑋. Then, (𝑓(𝑋), 𝑆) is complete S-metric space and so the 

sequence  𝑦𝑛  =  𝑇𝑥𝑛−1  ⊆ 𝑓(𝑋)  is converges in the S-metric space (𝑓(𝑋), 𝑆) , that is, there exists 

𝑧⋆ ∈ 𝑋 such that   

                                           lim𝑛→+∞ 𝑆 𝑦𝑛 , 𝑦𝑛 , 𝑧⋆ = 0.  

Consequently, we can find 𝑢 ∈ 𝑋 such that 𝑓𝑢 = 𝑧⋆. Now to show that 𝑇𝑢 = 𝑧⋆. From (4.4), we have  

                       𝑆 𝑓𝑥𝑛 , 𝑓𝑥𝑛 , 𝑓𝑢 ≥ 𝑎𝑆 𝑇𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑢 + 𝑏𝑆 𝑇𝑥𝑛 , 𝑇𝑥𝑛 , 𝑓𝑥𝑛 + 𝑐𝑆 𝑇𝑢, 𝑇𝑢, 𝑓𝑢                                        

Taking limit as 𝑛 → +∞ in the above inequality, we get  

                       0 = 𝑆 , 𝑧⋆, 𝑧⋆, 𝑓𝑢 ≥ 𝑎𝑆 𝑧⋆, 𝑧⋆, 𝑇𝑢 + 𝑏𝑆 𝑧⋆, 𝑧⋆, 𝑧⋆ + c𝑆 𝑇𝑢, 𝑇𝑢, 𝑧⋆   

                                                      =  𝑎 + 𝑐 𝑆 𝑧⋆, 𝑧⋆, 𝑇𝑢  or  𝑎 + 𝑐 𝑆 𝑇𝑢, 𝑇𝑢, 𝑧⋆  

This implies that 𝑆 𝑧⋆, 𝑧⋆, 𝑇𝑢 = 0 or 𝑆 𝑇𝑢, 𝑇𝑢, 𝑧⋆ = 0 and so 𝑇𝑢 = 𝑧⋆. Therefore, 𝑓𝑢 = 𝑇𝑢 = 𝑧⋆.  

Therefore, 𝑧⋆ is a point of coincidence of 𝑓 and 𝑇.  

Now we suppose that 𝑎 > 1. Let 𝑤⋆ be another point of coincidence of 𝑓 and 𝑇. So 𝑆𝑣 = 𝑇𝑣 = 𝑤⋆ 

for some 𝑣 ∈ 𝑋. Then from (4.7), we have 

                       𝑆  𝑧⋆, 𝑧⋆, 𝑤⋆ = 𝑆  𝑓𝑢, 𝑓𝑢, 𝑓𝑣    

                                              ≥ 𝑎𝑆 𝑇𝑢, 𝑇𝑢, 𝑇𝑣 + 𝑏𝑆 𝑇𝑢, 𝑇𝑢, 𝑓𝑢 + 𝑐𝑆 𝑇𝑣, 𝑇𝑣, 𝑓𝑣  

                                              = 𝑎𝑆  𝑧⋆, 𝑧⋆, 𝑤⋆     

This is true only when 𝑆  𝑧⋆, 𝑧⋆, 𝑤⋆ = 0. So  z⋆ = w⋆.                                   

Since 𝑓 and 𝑇 be weakly compatible, 𝑓𝑇𝑢 = 𝑇𝑓𝑢, that is, 𝑓𝑧⋆ = 𝑇𝑧⋆. Now we show that 𝑧⋆ is a 

common fixed point of 𝑓 and 𝑇. If 𝑎 > 1, then from condition (4.7), we have 

                   𝑆 𝑓𝑥𝑛 , 𝑓𝑥𝑛 , 𝑓𝑧⋆ ≥ 𝑎𝑆 𝑇𝑥𝑛 , 𝑇𝑥𝑛 , 𝑇𝑧⋆ + 𝑏𝑆 𝑇𝑥𝑛 , 𝑇𝑥𝑛 , 𝑓𝑥𝑛 + 𝑐𝑆 𝑇𝑧⋆, 𝑇𝑧⋆, 𝑓𝑧⋆  

Proceeding to the limit as 𝑛 → +∞, we have 

                                     𝑆 𝑧⋆, 𝑧⋆, 𝑓𝑧⋆ ≥ 𝑎𝑆 𝑧⋆, 𝑧⋆, 𝑇𝑧⋆ = 𝑎𝑆 𝑧⋆, 𝑧⋆, 𝑓𝑧⋆ ,  

which implies that 𝑆 𝑧⋆, 𝑧⋆, 𝑓𝑧⋆ = 0. Hence 𝑓𝑧⋆ = 𝑧⋆  and so 𝑓𝑧⋆ = 𝑇𝑧⋆ = 𝑧⋆. Hence 𝑓 and  𝑇 have 

a unique fixed point in 𝑋. This completes the proof. 
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