Bhartiya Krishi Anusandhan Patrika, volume 39 issue 1 (march 2024) : 24-31

Nano Fertilizers: New Vistas towards Sustainable Agriculture and Climate Change Mitigation: A Review

R.T. Chethan Babu1,*, Magan Singh1, N.S. Mavarkar2, B.R. Praveen3, S. Sudarshan4
1Division of Agronomy, ICAR-National Dairy Research Institute, Karnal-132 001, Haryana, India.
2Department of Agronomy, College of Horticulture, Keladi Shivappa Nayaka University of Agricultural and Horticultural Sciences, Mudigere-577 132, Shivamogga, Karnataka, India.
3Tea Research Association, North Bengal Regional R and D Centre, Nagarakata-735 225, West Bengal, India.
4Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi-110 012, India.
  • Submitted15-01-2024|

  • Accepted05-04-2024|

  • First Online 15-04-2024|

  • doi 10.18805/BKAP703

Cite article:- Babu Chethan R.T., Singh Magan, Mavarkar N.S., Praveen B.R., Sudarshan S. (2024). Nano Fertilizers: New Vistas towards Sustainable Agriculture and Climate Change Mitigation: A Review . Bhartiya Krishi Anusandhan Patrika. 39(1): 24-31. doi: 10.18805/BKAP703.

To ensure the food and nutritional security of the burgeoning global population, food production needs to be doubled in developing countries by 2050. Currently, 30-40% of agriculture production predominantly relies on chemical fertilizers. Precise crop nutrition, low nutrient efficiency, maintaining soil fertility, less damage to soil flora and minimal environmental footprint are the major challenges in modern agriculture. Recent developments in the application of nanotechnology to produce agriculture inputs emerged as a sustainable solution for addressing the challenges in modern intensive agriculture by replacing synthetic bulk fertilizers with their nanoparticle size (<100 nm), superior properties and smart delivery system. Nano fertilizers had the potential to fulfill the requirements of plant nutrition along with imparting sustainability in crop production without compromising the yield of the crops. Some of the current research studies have been reviewed in this paper with citation and these results showed that nano fertilizers have a substantial effect on plant growth, development and physiological parameters including chlorophyll content and photosynthetic activity, it depends on their composition, method and time of application. Their enhanced nutrient use efficiency, correlated with mitigating greenhouse gas emissions. Hence evolving as a cutting-edge approach for sustainable agriculture in climate change is enlightened in this review.


  1. Agrawal, S. and Rathore, P. (2014). Nanotechnology pros and cons to agriculture: A review. International Journal of Current Microbiology and Applied Sciences. 3: 43-55.

  2. Ajithkumar, K., Kumar, Y., Savitha, A.S., Kumar, A.M.Y., Narayanaswamy, C., Raliya, R., Krupashankar, M.R. and Bhat, S.N. (2021). Effect of IFFCO nano fertilizer on growth, grain yield and managing turcicum leaf blight disease in maize. International  Journal of Plant and Soil Science. 33(16): 19-28. 

  3. Alidoust, D. and Isoda, A. (2013). Effect of ã Fe2O3 nanoparticles on photosynthetic characteristic of soybean [Glycine max (L.) Merr.]: Foliar spray versus soil amendment. Acta Physiologiae Plantarum. 35: 3365-3375. 

  4. Al-Juthery, H.W., Habeeb, K.H., Altaee, F.J.K., AL-Taey, D.K. and Al-Tawaha, A.R.M. (2018). Effect of foliar application of different sources of nano-fertilizers on growth and yield of wheat. Bioscience Research. 4: 3976-3985.

  5. Armin, M., Biosci, I.J., Akbari, S. and Mashhadi, S. (2014). Effect of time and concentration of nano-Fe foliar application on yield and yield components of wheat. International Journal of Biosciences. 66(55): 69-75. 

  6. Azeim, M.M., Sherif, M.A., Hussien, M.S., Tantawy, I.A.A. and Bashandy, S.O. (2020). Impacts of nano-and non-nano fertilizers on potato quality and productivity. Acta Ecologica Sinica. 40(5): 388-397. 

  7. Benzon, H.R.L., Rubenecia, M.R.U., Ultra, V.U. and Lee, S.C. (2015). Nano-fertilizer affects the growth, development and chemical properties of rice. International Journal of Agronomy and Agricultural Research. 7(1): 105-117.

  8. Canadell, P., Davidson, E., Peters, G., Tian, H., Prather, N., Krummel, P. and  Winiwarter, W. (2020). New research: Nitrous oxide emissions 300 times more powerful than CO‚  are jeopardising Earth’s future. The Conversation: A News Letter.

  9. Deepa, M., Sudhakar, P., Nagamadhuri, K.V., Reddy, K.B., Krishna, T.G. and Prasad, T.N.V.K.V. (2015). First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique. Applied Nanoscience. 5: 545-551.

  10. Elemike, E., Uzoh, I., Onwudiwe, D. and Babalola, O. (2019). The role of nanotechnology in the fortifcation of plant nutrients and improvement of crop production. Applied Sciences. 9(3): 499. https://doi.org/10.3390/app9030499. 

  11. Etxeberria, E., Gonzalez, P., Bhattacharya, P., Sharma, P. and Ke, P.C. (2016). Determining the size exclusion for nanoparticles in citrus leaves. Hortscience. 51(6): 732-737.

  12. Fageria, N.K., Filho, M.P.B., Moreira, A. and Guimaraes, C.M. (2009). Foliar fertilization of crop plants. Journal of Plant Nutrition. 32: 1044-1064. 

  13. FAO, (2009). How to Feed the World in 2050. Food and Agriculture Organization. www.fao.org/3/a-ak542e/ak542e13.pdf.

  14. https://www.fao.org/fileadmin/templates/wsfs/docs/ expert_paper/How_to_Feed_the_ World_in_ 2050.pdf.

  15. Fatollahpour, G.M., Rashidi, V., Mirshekari, B., Khalilvand, B.E. and Farahvash, F. (2020). Effects of nano-fertilizers on physiological and yield characteristics of pinto bean cultivars under water deficit stress. Journal of Plant Nutrition. 43(19): 2898-2910.

  16. Fernandez, V. and Brown, P.H. (2013). From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients.  Frontiers in Plant Science. 4: 289.  https://doi.org/10.3389/ fpls.2013.00289.

  17. Food and Agriculture Organization of the United Nations, (2009). How to Feed the World in 2050: High-Level Expert Forum. (12-13 October 2009).

  18. Glibert, P.M., Harrison, J., Heil, C. and Seitzinger, S. (2006). Escalating worldwide use of urea-a global change contributing to coastal eutrophication. Biogeochemistry. 77: 441-463. 

  19. IFFCO, (2021). https://www.iffco.in/en/nano-urea-liquid-fertilizer (Accessed on 21st June 2021).

  20. Janmohammadi, M., Sabaghnia, N., Seifi, A. and Pasandi, M. (2017). The impacts of nano-structured nutrients on chickpea performance under supplemental irrigation. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis.  65(3): 859-870.

  21. Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.L. and Lead, J.R. (2008). Nanomaterials in the environment: Behaviour, fate, bio availability and effects. Environmental Toxicology and Chemistry. 27: 1825-1851. 

  22. Knoblauch, M. and Oparka, K. (2012). The structure of the phloem- Stillmore questions than answers. The Plant Journal. 70: 147-156.

  23. Kumar, Y., Singh, T., Raliya, R. and Tiwari, K.N. (2021). Nano fertilizers for sustainable crop production, higher nutrient use efficiency and enhanced profitability. Indian Journal of Fertilisers. 17(11): 1206-1214.

  24. Kumar, Y., Tiwari, K.N., Nayak, R.K., Rai, A. and Singh, S.P. (2020). Nano fertilizers for increasing nutrient use efficiency, yield and economic returns in important winter season crops of Uttar Pradesh. Indian Journal of Fertilisers. 16(8): 772-786.

  25. Lucia Fernandez, (2021). Statista. https://www.statista.com/ statistics/438967/fertilizer-consumption-globallynutrient/ #:~:text=In%201965%2C%20the%20consumption %20of,to%20over%20190%20million%20tons (21st Feb 2022).

  26. Metwally, I.M., Doaa, M.R., Abo-Basha, A.E.A.M. and Abd El-Aziz, M. (2018). Response of peanut plants to different foliar applications of nano-iron, manganese and zinc under sandy soil conditions. Middle East Journal of Applied Sciences. 8(2): 474-482.

  27. Miranda-Villagomez, E., Trejo-Tellez, L.I., Gomez-Merino, F.C., Sandoval-Villa, M., Sanchez-Garcia, P. and Aguilar- Mendez, M.A. (2019). Nano phosphorus fertilizer stimulates growth and photosynthetic activity and improves P status in rice. Journal of Nanomaterials. doi: 10.1155/2019/ 5368027.

  28. Mohanraj, J., Subramanian, K.S. and Lakshmanan, A. (2019). Role of nano-fertilizer on greenhouse gas emission in rice soil ecosystem. Madras Agricultural Journal. 106(10-12): 657-663.

  29. Moore, M.N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International. 32(8): 967-976.

  30. Morales-Diaz, A.B., Hortensia, O.O., Antonio, J.M., Gregorio, C.P., Susana, G.M. and Adalberto, B.M. (2017). Application of nano elements in plant nutrition and its impact in ecosystems. Advances in Natural Sciences: Nanoscience and Nanotechnology. 8(1): 013001. doi: 10.1088/2043-6254/ 8/1/013001.

  31. Naderi, M.R. and Abedi, A. (2012). Application of nanotechnology in agriculture and refinement of environmental pollutants. Journal of Nanotechnology. 11(1): 18-26.

  32. Naderi, M.R. Danesh, S.A. (2013). Nanofertilizers and their roles in sustainable agriculture. International Journal of Agriculture and Crop Sciences. 5(19): 2229-2232. 


  33. Park, S., Croteau, P., Boering, K.A., Etheridge, D.M., Ferretti, D., Fraser, P.J., Kim, K.R., Krummel, P.B., Langenfelds, R.L., Ommen, T.D.V., Steele, L.P. and Trudinger, C.M. (2012). Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nature Geoscience. 5: 261- 265. 

  34. Payghan, H. (2016). Effects of organic, chemical and nano-biological fertilizers on quantitative and qualitative charachteristics of millet (Panicum miliaceum) varieties (Doctoral Dissertation, University of Zabol).

  35. PHYS.ORG, (2015). Scientists tackling Gulf of Mexico hypoxia. (Accessed 12th Feb 2015).

  36. Preetha, P.S. and Balakrishnan, N. (2017). A review of nano fertilizers and their use and functions in soil review article. International Journal of Current Microbiology and Applied Sciences. 6(12): 3117-3133. 

  37. Raddy, R., Salimath, M., Geetha, K. and Shankar, A. (2018). ZnO nanoparticle improves maize growth, yield and seed zinc under high soil ph condition. International Journal of Current Microbiology and Applied Sciences. 7: 1593- 1601.

  38. Rajkishore, S.K., Natarajan, S.K., Manikandan, A., Vignesh, N.S. and Balusamy, A. (2015). Carbon sequestration in rice soils-A review. The Ecoscan. 48: 427-433.

  39. Raliya, R., Saharan, V., Dimkpa, C. and Biswas, P. (2018). Nano fertilizer for precision and sustainable agriculture: Current state and future perspectives. Journal of Agricultural and Food Chemistry. 66(26): 6487-6503. 

  40. Reddy, B.M., Elankavi, S., Midde, S.K., Mattepally, V.S. and Bhumireddy, D.V. (2022). Effects of conventional and nano fertilizers on growth and yield of maize (Zea mays L.). Bhartiya Krishi Anusandhan Patrika. 37(4): 379-382. doi: 10.18805/BKAP500.

  41. Ren, N., Wang, Y., Ye, Y., Zhao, Y., Huang, Y., Fu, W. and Chu, X. (2020). Effects of continuous nitrogen fertilizer application on the diversity and composition of rhizosphere soil bacteria. Frontiers in Microbiology. 11: 1948.  https:// doi.org/10.3389/fmicb.2020.01948.

  42. Rui, M., Ma, C., Hao, J., Guo, Y., Rui, X., Tang, X. and Zhu, S. (2016). Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science. 7: 815. https://doi.org/10.3389/fpls.2016.00815. 

  43. Salama, H.S.A. and Badry, H.H. (2020). Effect of partial substitution of bulk urea by nanoparticle urea fertilizer on productivity and nutritive value of teosinte varieties. Agronomy Research. 18(4): 2568-2580. 

  44. Sankar, L.R., Mishra, G.C., Maitra, S. and Barman, S. (2020). Effect of nano NPK and straight fertilizers on yield, economics and agronomic indices in baby corn (Zea mays L.). International  Journal of Chemical Studies. 8(2): 614-618.

  45. Sekhon, B.S. (2014). Nanotechnology in agri-food production: An over view. Nanotechnology, Science and Applications. 7: 31-53. 

  46. Sheoran, P., Grewal, S., Kumari, S. and Goel, S. (2021). Effect of environmentally benign nano-nitrogen, potassium, zinc on growth and yield enhancement in Triticum aestivum. Indian Journal of Agricultural Research. 1(4). doi: 10.18805/ IJARe.A-5698.

  47. Singh, D.M., Gautam, C., Prakash, P.O., Mohan, M.H., Prakasha, G. and Vishwajith, V. (2017). Nano-fertilizers is a new way to increase nutrients use efficiency in crop production.  International Journal of Agriculture Sciences. 9(7): 3831- 3833.

  48. Solanki, P., Bhargava, A., Chhipa, H., Jain, N. and Panwar, J. (2015). Nano-fertilizers and their smart delivery system. Nanotechnologies in Food and Agriculture. Springer Champ. pp. 81-101.

  49. Stewart, W.M. and Roberts, T.L. (2012). Food security and the role of fertilizer in supporting it. Procedia Engineering. 46: 76-82. 

  50. Subbaiah, L.V., Prasad, T.N.V.K.V., Krishna, T.G., Sudhakar, P., Reddy, B.R. and Pradeep, T. (2016). Novel effects of nanoparticulate delivery of zinc on growth, productivity and zinc biofortification in maize (Zea mays L.). Journal of Agricultural and Food Chemestry. 64(19): 3778-3788. 

  51. Suman, P.R., Jain, V.K. and Varma, A. (2010). Role of nanomaterials in symbiotic fungus growth enhancement. Currrent Science. 99(9): 1189-1191. 

  52. Suppan, S. (2013). Nanomaterials in soil: Our future food chain. The Institute of Agriculture and Trade Policy, Minneapolis, MN, USA.

  53. The print media, available at https://theprint.in/india/what-is-nano- urea-indias-21st-century-product-aiming-to-revolutionise- world-agriculture/673151/ (Accessed on 21st June 2021).

  54. Trenkel, M.E. (2010). Slow and controlled release and stabilized fertilizers: An option for enhancing nutrient use efficiency in agriculture. International Fertilizer Industry Association, Paris, France.

  55. Uzu, G., Sobanska, S., Sarret, G., Munoz, M. and Dumat, C. (2010). Foliar Lead uptake by lettuce exposed to atmospheric fallouts. Environmental Science and Technology. 44(3): 1036-1042. 

  56. Vasuki, A., Paulpandi, V.K., Singh, R.D. and Gurusamy, A. (2023). Influence of irrigation methods and nano-fertilizers application on the yield of transplanted lowland rice (Oryza sativa L.) in periyar vaigai command area of Madurai. Agricultural  Science Digest. doi: 10.18805/ag.D-5840.

  57. Wang, W.N., Tarafdar, J.C. and Biswas, P. (2013). Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. Journal of Nanoparticle Research. 15: 1-13. 

  58. Yogendra, K., Tiwari, K.N., Nayak, R.K., Rai, A., Singh, S.P., Singh, A.N., Kumar, Y., Tomar, H., Singh, T. and Raliya, R. (2020). Nano fertilizers for increasing nutrient use efficiency, yield and economic returns in important winter season crops of Uttar Pradesh. Indian Journal of Fertilisers. 16(8): 772- 786.

  59. Zheng, L., Hong, F.S., Lu, S.P. and Liu, C. (2005). Effect of nano- TiO2 on strength of naturally and growth aged seeds of spinach. Biological Trace Element Research. 104(1): 83-91.

Editorial Board

View all (0)