Aetiology, prophylaxis and management of preeclampsia

Authors

  • Karolina Gronkowska University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland https://orcid.org/0000-0002-9121-3700

DOI:

https://doi.org/10.18778/1730-2366.16.22

Keywords:

proteinuria, gestational hypertension, trophoblast invasion, uteroplacental malperfusion, endothelial dysfunction

Abstract

Although preeclampsia affects approximately 3%–8% of pregnancies worldwide and is a major contributor to maternal and neonatal mortality and morbidity, the aetiology of preeclampsia is still not fully understood. This review presents the current knowledge on the aetiology of preeclampsia, with a special emphasis on risk factors and their role, and describes recommendations for the prevention and treatment of preeclampsia.

Downloads

Download data is not yet available.

References

Alcala, M., Gutierrez-Vag, S., Castor, E., Guzman-Gutiérrez, E., Ramos-Álvarez, M., Vian, M. 2018. Antioxidants and oxidative stress: focus in obese pregnancies. Frontiers in Physiology, 9: 1569.
Google Scholar DOI: https://doi.org/10.3389/fphys.2018.01569

Amaral, L.M., Wallace, K., Owens, M., LaMarca, B. 2017. Pathophysiology and Current clinical management of preeclampsia. Current Hypertension Reports, 19(8): 61.
Google Scholar DOI: https://doi.org/10.1007/s11906-017-0757-7

Aouache, R., Biquard, L., Vaiman, D., Miralles, F. 2018. Oxidative stress in preeclampsia and placental diseases. International Journal of Molecular Sciences, 19(5): 1496.
Google Scholar DOI: https://doi.org/10.3390/ijms19051496

Benschop, L., Duvekot, J.J., Roeters van Lennep, J.E. 2019. Future risk of cardiovascular disease risk factors and events in women after a hypertensive disorder of pregnancy. Heart, 105(16): 1273–1278.
Google Scholar DOI: https://doi.org/10.1136/heartjnl-2018-313453

Braunthal, S., Brateanu, A. 2019. Hypertension in pregnancy: pathophysiology and treatment. SAGE Open Medicine, 7: 2050312119843700.
Google Scholar DOI: https://doi.org/10.1177/2050312119843700

Brown, M.A., Magee, L.A., Kenny, L.C., Karumanchi, S.A., McCarthy, F.P., Saito, S., Hall, D.R., Warren, C.E., Adoyi, G., Ishaku, S. 2018. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension, 72(1): 24–43.
Google Scholar DOI: https://doi.org/10.1161/HYPERTENSIONAHA.117.10803

Cornelius, D.C. 2018. Preeclampsia: from inflammation to immunoregulation. Clinical Medicine Insights: Blood Disorders, 11: 1179545X17752325
Google Scholar DOI: https://doi.org/10.1177/1179545X17752325

Cunningham, M.W.Jr., Vaka, V.R., McMaster K., Ibrahim, T., Cornelius D.C., Amaral L., Campbell N., Wallukat, G., McDuffy, S., Usry, N., Dechend, R., LaMarca, B. 2019. Renal natural killer cell activation and mitochondrial oxidative stress; new mechanisms in AT1-AA mediated hypertensive pregnancy. Pregnancy Hypertension, 15: 72–77.
Google Scholar DOI: https://doi.org/10.1016/j.preghy.2018.11.004

Fox, R., Kitt, J., Leeson, P., Aye, C.Y.L., Lewandowski, A.J. 2019. Preeclampsia: risk factors, diagnosis, management, and the cardiovascular impact on the offspring. Journal of Clinical Medicine, 8(10): 1625.
Google Scholar DOI: https://doi.org/10.3390/jcm8101625

Geldenhuys, J., Rossouw, T.M., Lombaard, H.A., Ehlers, M.M., Kock, M.M. 2018. Disruption in the regulation of immune responses in the placental subtype of preeclampsia. Frontiers in Immunology, 9: 1659.
Google Scholar DOI: https://doi.org/10.3389/fimmu.2018.01659

Gobert, M. and Lafaille, J.J. 2012. Maternal-fetal immune tolerance, block by block. Cell, 150(1): 7–9.
Google Scholar DOI: https://doi.org/10.1016/j.cell.2012.06.020

Godo, S., Shimokawa, H. 2017. Endothelial Functions. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(9): e108–e114.
Google Scholar DOI: https://doi.org/10.1161/ATVBAHA.117.309813

Jabrane-Ferrat, N., Siewiera, J. 2014. The up side of decidual natural killer cells: new developments in immunology of pregnancy. Immunology, 141(4): 490–497.
Google Scholar DOI: https://doi.org/10.1111/imm.12218

Kenny, L.C., Kell, D.B. 2017. Immunological tolerance, pregnancy, and preeclampsia: the roles of semen microbes and the father. Frontiers in Medicine, 4: 239.
Google Scholar DOI: https://doi.org/10.3389/fmed.2017.00239

Kim, J.-Y., Kim, Y.M. 2015. Acute atherosis of the uterine spiral arteries: clinicopathologic implycations. Journal of Pathology and Translational Medicine, 49(6): 462–471.
Google Scholar DOI: https://doi.org/10.4132/jptm.2015.10.23

Lam, M.T.C., Dierking, E. 2017. Intensive Care Unit issues in eclampsia and HELLP syndrome. International Journal of Critical Illness and Injury Science, 7(3): 136–141.
Google Scholar DOI: https://doi.org/10.4103/IJCIIS.IJCIIS_33_17

Li, J., LaMarca, B., Reckelhoff, J.F. 2012. A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. American Journal of Physiology Heart and Circulatory Physiology, 303(1): H1–H8.
Google Scholar DOI: https://doi.org/10.1152/ajpheart.00117.2012

Li, Y., Yan, J., Chang, H.-M., Chen, Z.-J., Leung, C.K. 2021. Roles of TGF-β superfamily proteins in extravillous trophoblast invasion. Trends in Endocrinology and Metabolism, 32(3): 170–189.
Google Scholar DOI: https://doi.org/10.1016/j.tem.2020.12.005

Lu, H.-Q., Hu, R. 2019. The role of immunity in the pathogenesis and development of pre-eclampsia. Scandinavian Journal of Immunology, 90(5): e12756.
Google Scholar DOI: https://doi.org/10.1111/sji.12756

Manna, S., McCarthy, C., McCarthy, F.P. 2019. Placental ageing in adverse pregnancy outcomes: telomere shortening, cell senescence, and mitochondrial dysfunction. Oxidative Medicine and Cellular Longevity, 2019: 3095383.
Google Scholar DOI: https://doi.org/10.1155/2019/3095383

Mannaerts, D., Faes, E., Cos, P., Briedé, J.J., Gyselaers, W., Cornette, J., Gorbanev, Y., Bogaerts, A., Spaanderman, M., Craenenbroeck, E., Jacquemyn, Y. 2018. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PloS One, 13(9): e0202919.
Google Scholar DOI: https://doi.org/10.1371/journal.pone.0202919

Mayrink, J., Costa, M.L., Cecatti, J.G. 2018. Preeclampsia in 2018: revisiting concepts, physiopathology, and prediction. The Scientific World Journal, 2018: 6268276.
Google Scholar DOI: https://doi.org/10.1155/2018/6268276

Staff, A.C. 2019. The two-stage placental model of preeclampsia: an update. Journal of Reproductive Immunology, 134–135: 1–10.
Google Scholar DOI: https://doi.org/10.1016/j.jri.2019.07.004

Taravati, A., Tohidi, F. 2018. Comprehensive analysis of oxidative stress markers and antioxidants status in preeclampsia. Taiwanese Journal of Obstetrics & Gynecology, 57(6): 779–790.
Google Scholar DOI: https://doi.org/10.1016/j.tjog.2018.10.002

Tomimatsu, T., Mimura, K., Matsuzaki, S., Endo, M., Kumasawa, K., Kimura, T. 2019. Preeclampsia: maternal systemic vascular disorder caused by generalized endothelial dysfunction due to placental antiangiogenic factors. International Journal of Molecular Sciences, 20(17): 4246.
Google Scholar DOI: https://doi.org/10.3390/ijms20174246

Tong, W., Giussani, D.A. 2019. Preeclampsia link to gestational hypoxia. Journal of Developmental Origins of Health and Disease, 10(3): 322–333.
Google Scholar DOI: https://doi.org/10.1017/S204017441900014X

Turbeville, H.R., Sasser, J.M. 2020. Preeclampsia beyond pregnancy: long-term consequences for mother and child. American Journal of Physiology-Renal Physiology, 318(6): F1315–F1326.
Google Scholar DOI: https://doi.org/10.1152/ajprenal.00071.2020

Downloads

Published

2021-09-29

How to Cite

Gronkowska, K. (2021). Aetiology, prophylaxis and management of preeclampsia. Acta Universitatis Lodziensis. Folia Biologica Et Oecologica, 17, 111–121. https://doi.org/10.18778/1730-2366.16.22