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Abstract

Capietto, Dalbono and Portaluri proposed a class of strongly indefinite second
order Hamiltonian systems with Dirichlet boundary conditions. We will

investigate this system and obtain some new results.

1. Introduction and Main Results

Many famous mathematicians such as Ekeland [1]; Long [2, 3];
Mawhin and Willem [4]; and Rabinowitz [5] have investigated
Hamiltonian systems. In [6, 7, 8, 9], some problems concerning
Hamiltonian systems have also been investigated. In 2010, Capietto et al.
[10] proved a multiplicity result for the class of strongly indefinite
nonlinear second-order asymptotically linear systems with Dirichlet

boundary conditions:
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Jx + S(¢, x(¢))x(¢) = 0, (1.1)
x(0) = 0 = x(1), (1.2)
I, 0
where J = , 8 :[0,1]x R" — L (R") is continuous. We
0 1,

first introduce an index theory for the linear second order indefinite

Hamiltonian system (1.2) and
Pi + B(t)x = 0, (1.3)

1 0

where P =( ] B e L”([0, 1], £4(R?)) in Section 2. Then, in

0 -1
Section 3, we investigate nontrivial solutions of the asymptotically linear

second-order indefinite Hamiltonian system (1.2) and

Pk + V'(t, x) = 0, (1.4)
where V e C1([0, 1], R?).

In Section 4, we will recall some results from [11] concerning index
theory for self-adjoint operator equations and multiple solutions for
asymptotically linear operator equations, which are used in Sections 2-3.
Our main results will be obtained by applying some associated results for

operator equations from [11].

2. Index Theory for Second Order Linear
Indefinite Hamiltonian Systems
In this chapter, we discuss the problem
P + B(t)x = 0, (2.1)
x(0) = 0 = x(1), (2.2)

1 0
where P = { ] B e L*([0, 1], £4(R?)).

0 -1



NONTRIVIAL SOLUTIONS OF ASYMPTOTICALLY ... 99
Define X = L%([0, 1], R?), (Ax)(t) = — Pk(t) with D(A) = {x € H?
([0, 1]; R?)|x(0) = 0 = x(1)}, then A : D(A) c X — X.

We now prove A is self-adjoint. If so, c,(A) =0. To this end, it

suffices to prove
() (Ax, y) = (x, Ay), Vx, y € D(A), and
(1) (Ax, y) = (x, 2), Vx € D(A) = y € D(A), and Ay = z.

In fact Vx, y € D(A),

1 1 1
(ax. y) = [ (- PEO). yO)t = [ 51O @dt+ [ w2000
= OO + [ 5050d + 0RO - [ w00
1 1
= [ ©On0d - | @50
= 00O - [ 01050 - 050 + [ w50
1 1
= [ mOnOdt + [ x50

- [ (ate), - Pyt

= (x7 Ay)

Thus (1) holds. To prove (i1), suppose

1 1
j (= PE(t), y(t))dt = j (x(t), 2(0))dt, Vx e D(A).
0 0
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Because z € L?([0, 1], R?), there exists
w e HE([0, 1]; R?) = D(A),

such that Aw = z. In fact, there exists

x(t) = —tjl [ rwyanas + [ [ feyaas = | "G, 5)f(s)ds,
0J0 0J0 0

with G(¢, s) = (t—1)s when s <t and G(, s)=t(s—1) when s >t
x(t) is a solution of x(¢) = f(¢),t € (0,1), x(0) =0 = x(1). Thus
w=-P| ;G(t, s)2(s)ds, and (Ax, y) = (x, Aw) = (Ax, w) so (Ax, y —w) =0,
Vx € D(A), hence y = w € D(A).

Now, we want to prove o(A) = 64(A), and it suffices to prove

(@) op(4) = { £ k%% };

(ii) dim ker(A — AIy) <1 for A = +k*n?;

(iii) o,(A) = 0.

At first A € 0,(A) < 3x € D(A)\ {0} such that (A -2Aly)x =0,
equivalently, — PX¥ — Ax = 0, x(0) = 0 = x(1).

1 0

By substituting P = { J, we obtain
1

0 —
3.6.1 + 7\.361 =0, 3.6.2 - 7\.362 =0,
x1(0) =0 = x1(1), x2(0) = 0 = x2(2).

So & e { +k%r?} for k € N* and (i) holds.
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c sin knt
By definition, ker(A —Alg) = { J when A = k%72, and
0
0
ker(A — Aly) = [ J when A = —k%n%, where ¢ is a constant,
c sin knt

otherwise ker(A — Al ) = {0}.

(iii) That .(A) = 0 is equivalent to the following: given A € R\ 5,(A),
R(A-\,)=X. This is equivalent to VfeX,-Px-ix=f,
x(0) = 0 = x(1) has a unique solution. So, we have three possibilities:

Case 1. A = 0. In this case, —Px = f(t), t € (0, 1), x(0) = 0 = x(1)

1
has a unique solution: x = — PIO G(t, s)f(s)ds.

Case 2. L > 0. Set A = u2, u > 0. Then, suppose the solution of
i+ ulx = f(t) is
x(t) = c;(t) cos ut + co(t) sin ut.
Because
x(t) = —cy(¢)u sin ut + co(t)u cos ut + ¢;(t) cos ut + é9(t) sin ut.
By setting
¢1(t)cos ut + ¢9(t)sinut = 0,
and then
£(t) = —u?x(t) — ¢ (¢)u sin ut + é9(t)u cos ut,
x(0) = 0 implies ¢; = 0, and because x(1) = 0,

1 1

1
f(7)sin utdT cos u + (cg + %J‘ f(7) cos utdT)sin w.
0 0

0=

Because A\ = uz, sinu # 0, cg 1is determined uniquely, and hence

2

X +u“x = f(t), x(0) = 0 = x(1) has a unique solution.
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Case 3. A <0, let & = —u”, with u > 0.

Suppose the solution of & — u%x = f(¢) is

x(t) = ¢ (t)e™™ + co(t)e™.
Then
%(t) = —ucy(t)e™ ™ + ucy(t)e™ + ¢ (t)e ™™ + éqt)e™.
By setting
G )e ™™ 4 éq(t)e™ = 0.
£(@t) = ulx(t) - uey (O™ + uéq ().

2

Substituting into the equation ¥ — u“x = f(t), we obtain

—uéy (e + uéq(t)e™ = ().

Thus
2, ()™ ==~ (), 26(t)e™ = - f(0)
and
a® = - ([ fnedr+e),
) = o ([ fe dr + c3),
Finally,

t t
6(0) = g ([ fm)eTar + cy)e o o[ fr)e T 4 e)et.
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Because x(0) = 0 = x(1), ¢; and cqy satisfy
1 1
¢ —cg =0, (J. f(r)e ™ Tdr + cg)e" — (J. f(m)e"Tdr + ¢y )e ™ = 0.
0 0

Then ¢; and cy are determined uniquely and it means that

i—u’x = f(t), x(0)=0=x()
has a unique solution.

Similar to Definition 4.1, we have the following definitions:

Definition 2.1. For any B e L2([0, 1], £,(R?)), we define
vp(B) = dim ker(A — B),
where B e £,(X) is defined by (Bx)(t) = B(t)x(z).

Definition 2.2. For any B;, By € L*([0, 1], £L;(R?)) with B, < By,

we define

Ip(B, By) = Y vp((By +MBy - By))),
r€[0,1)

and for any By, By € L*([0, 1], £Ls(R?)), we define
Ip(By, By) = Ip(By, cly) - Ip(Bs, cly),
for some constant ¢ satisfying ¢l > By, cIy > Bs.

Here for any B, By € L?([0, 1], £Ls(R?)), we write B, < By if
Bi(t) < By(t) for ae. te[0,1]; write B; < By if B, < B, and

B (t) < By(t) on a subset of [0, 1] with positive measure.
Definition 2.3. For any B e L*([0, 1], £;(R?)), we define

ip(B) = Ip(0, B).
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From Definitions 2.1-2.3, vp(cly) =0 when ¢ € R\ { + k%n?}(k = 0),
vp(cly) =1 when ¢ e { + k%n%}; ip(cly) = k when |d e (k%n2, (k +1)*x?],
ip(cly) =0 when ¢ e (- =%, n2).

Proposition 2.4. For any By, By € L*([0, 1], £L;(R?)). If B, < By,
then ip(By) < ip(By), ip(By)+vp(By) < ip(By)+vp(By); if B < By,
then ip(El ) + Up(El) < iP(EZ )

This proposition comes from [11, Proposition 5.1.2 (iii)].

3. Nontrivial Solutions for Asymptotically Linear Second
Order Indefinite Hamiltonian Systems
In this chapter, we investigate the following problem:
Pi+V'(t, x) =0, 3.1)
x(0) = 0 = x(1), (3.2)
where V e C'([0, 1]x R?").
From Theorems 4.3-4.5, we have the following theorems:

Theorem 3.1. Assume that V e C}([0, 1]x R?) satisfies

(V;) there exist By, By € L*([0, 1], £,(R?)) with ip(B;) = ip(By),
vp(By) = 0 such that V'(t, x) = B(t, x)x + h(t, x), where B,(t) < B(t, x)
< By(t), V(t, x) € CH([0, 1]x R*") and h(t, x) bounded, then (3.1)-(3.2)
has one solution; if we assume

(Vy) there exist a symmetric n x n matrix C(t, x), which is continuous
with respect to (t, x)e[0,1]xR" and Cj, Cy e L*([0, 1], L;(R?))
with ip(Cy) =ip(Cy), vp(Cy) =0 such that Ci(t) < C(¢, x) < Cy(t),

V(t, x) € [0, 1]x R? and V'(t, x) = C(t, x)x + o(x|) as |x| - O.
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Then (3.1)-(3.2) has a nontrivial solution if ip(By) —ip(Cy) is odd.

Theorem 3.2. Assume that

(V3) V e C%([0, 1] x R?) and V'(t, 0) = O;

(V,) there exist By, By € L*([0, 1], Ls(R?)) satisfying ip(By) = ip(By),
vp(By) = 0 and

B, (t) < V'(t, x) < Byl(t),

v(t, x) with |x| =2 r > 0;

(V5) with By = V'(t, 0), we have

i(By) ¢ [ip(By), ip(By) +vp(By)]-

Then (3.1)-(3.2) has one nontrivial solution. Under the further assumption,

(Ve) vp(By) =0 and |ip(B;)-ip(By) =2, (3.1)-(3.2) has two
nontrivial solutions.

Proof of Theorem 3.1. Define X = L2([0, 1],R?"), (Ax)(¢) = - Pi(t),

then D(A)={x e H*([0,1], R*)|x(0) = 0 = x(1)} ¢ X. As we have

proved in Section 2, A is an unbounded self-adjoint operator with
1
o(A) = 64(A) is unbounded from both above and below and Z=D(|A|2)

= H}([0, 1], R?) as we have proved in [12, Proposition 1.17]. Define
1
D(x) = J' Ve, x(t)dt, Vx e X. (3.3)
0
By assumption (V;), ® e C1(X) and

O'(x)y = (VO(x), y) = jolv'(t, 1)yt VieX.  (3.4)
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Set
(B(x)y)(t) = B(t, x(0))y(t), C(x) () = Alt, x(2)), (Bix)(t) = B;(t)x(2),
i=1,2 (3.5)

in view of Theorem 4.3, there exists one solution for (3.1)-(3.2); if we

further assume (Vy), ® defined as in (3.3) satisfies (®g) of Theorem 4.3,

then (3.1)-(3.2) has at least one nontrivial solution ip(B;)—ip(C;) is
odd.

Proof of Theorem 3.2. The following trick comes from [11]. Note
that

1
V', x) = j V(t, 6x)d0x + V', 0).
0
Define
1
B(t, x) :j V'(t, 6x)do, |x| > /8,
0

and otherwise
B(t, x) = By (¢).

When |x| > r /3
1 1 3
j V(t, 0x)d0 = j +j V'(t, 0x)d0 = I, + I,
0 ) 0

then, in view of (V3)
(1 -93)By(t) < I; < By(t)(1 -5).
There exists M > 0 such that

-M<V'(t, x)< M,
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for all (¢, x) € [0, 1] x R™. Thus
~Ms < I < Ms,
and if By(t) < M,
I + Iy < By(t) + MS — By(t)5 < By(t) + 26M,
and at the same time Bj(t) < By(t) < M, then

I]_ + 12 > B]_(t)— SBl(t)— oM > Bl(t)— 26M.

107

Because i(B;) = i(By) and v(B;) = v(Bg) =0, there exists ¢ > 0 such

that
By —¢) = i(By) = i(By) = i(By +¢),

and

V(B; —€) =0 = v(By +¢).
Choose M > 0 such that

- M < B;(t) < By(t) < M,
and & > 0 such that

20M < e
Then
Bi(t) - € < B(t, x) < Bq(t) + ¢,

and

h(t, x) = V'(t, x) — B(t, x)x
1s bounded. Theorem 4.4 applies and the results hold.

Corollary 3.3. Assume that

((k-1)%7% + I, < V'(t, x) < (®n% - )I,,, V(@ x),

where ¢ >0 is small and k € N. Then (3.1)-(3.2) has at least one

solution.
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Proof. Let Bj(t):= (k-1)?nI,, By(t) = (k%n® — § ), then

N(t, x) =V, x) - %(Bl(t)x, x) 1s convex with respect to x, since

N'(t, x) > eIy, and

1 1
V(t, x) = I i ds(jo V'(t, msx)xsdr, x) + (V'(t, 0), x) + V(z, 0)

< = (k222 - ) |x* + (V'(¢, ), x) + V(2, 6)

o

b|x|2 +c,

IA
N

where b = k%n? —%, ¢ > 0 is a constant. Since ip(bI,) = ip((k — 1)>x%I,)
+vp((k -=1)*n1,), (3.1)-(3.2) has a solution in view of Theorem 3.2.

In the end of this chapter as in Dong [11], we have the following

result:

Theorem 3.4. Assume that V satisfies

(V7) V e C%([0, 1] x R?") and there exist By, By L*([0, 1], £,(R?"))
with ip(B,) = ip(By), vp(Bs) = 0 such that

Bi(t) < V'(t, x) < By(t), (3.6)
V(t, x) € [0, 1] x R*" with |x| > r > 0.
(Vg) V'(¢, 0) = 0 and vp(By) = 0, where we set By(t) = V'(t, 0).
(Vg) V(¢, —x) = V(¢, x) forall (¢, x) € [0, 1]x R",

then (3.1)-(3.2) has |ip(By) — ip(By )| distinct pairs of solutions.
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Proof. From (3.4) and (Vyg),

1 1p1
D'(x)y = J V'(¢, x)ydt = J j V"(t, 0x)xydodt, 3.7
0 0J0
thus (@) is satisfied in view of (V7).

1
And (®"(x)y, z) = j o (V"(t, x)y, 2)dt, with V"(2,0)=By(t) and vp(By)=0,
(®4) is satisfied, thus Theorem 4.5 yields |ip(By)—ip(Bj)| distinct
pairs of solutions for (3.1)-(3.2).

4. Appendix

In this section, we will recall some results from [11] concerning index
theory for self-adjoint operator equations and multiple solutions of

asymptotically linear operator equations, which are used in Sections 2-3.

Let X be a real separable infinite dimensional Hilbert space with
inner product (,-:) and norm |-|. Let A:D(A)c X > X be an

unbounded linear self-adjoint operator with domain D(A) satisfying
o(A) = 64(A) and which is unbounded from both above and below. In [11],

the authors establish an index theory for the equation
Ax — Bx = 0, 4.1)
for any B e L (X).
Definition 4.1. (i) For any B € £,(X), we define
v4(B) = dim ker(A - B), (4.2)
v 4(B) is called the nullity of B.

(i) For any B;, By € L (X) with B; < By, we define

I4(By, By) = D va((l=2)B; +2By); (4.3)
r€[0,1)
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and for any B;, By € L,(X), we define
Io(By, By) = I4(By, k1)~ 14(Bg, k1), (4.4)

where I : X — X is the identity map and &I > B;, kI > By for some

real number & > 0.

(iii) For any B € £,(X), we define

ZA(B) = iA(BO)+iA(BO9 B), (45)
where Bj e L (X) is fixed and i4(By) is a prescribed integer.

Here for any B;, By € L (X), we write B; < By with respect to X;
(a linear subspace of X) if and only if (B;x, x) < (Byx, x) for any x € Xj;
we write B; < By with respect to X; if and only if (Bjx, x) < (Bgx, x)
for any x € X; \ {0}. If X; = X, we just write B; < By or By < By. As
in [11], we call I4(B;, By) the relative Morse index between B; and
B,, we call iy(B) the index of B and iy (By) is called an initial index.

Generally, the initial index can be any prescribed integer and the index

is(B) also depends on Bj and the initial index. However, for a concrete
operator A in applications, we will choose special B, and i4(Bg) so that

i4(B) looks like natural as much as possible.

The index and nullity established above have the following monotone

property.

Proposition 4.2. For any By, By € L*([0, 1], £,(R?*")), if B, < By,
then is(By) <ia(Bg) and is(By)+v4(By)<ia(Bg)+va(By); if By < By,
then ZA(BI) + VA(BI) < ZA(B2)

Consider the following operator equation:

Ax — Vo (x) = 0, (4.6)

1 cpe
where VO : Z = D(JA]2) — X satisfying (VO(x), y) = ®'(x)y, Vx, y € Z.
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Theorem 4.3 [11, Theorem 8.4.1]. Assume that ® € C*(Z, R) satisfies

(@) There exist B: X — L(X), By, By € L (X) with i4(B;)=1i4(Bg),
va(By) =0 such that B; < B(x)< By and V®(x)- B(x)x = C(x),
[C(x)| < M for all x € Z and some M > 0, then (4.6) has at least one

solution, if we further assume that

(®y) there exist By : X — LX) and By, Bys € L (X) with
iA(BOI):iA(BOZ)7UA(BOZ ):O and some r > 0 such that BOl < Bo(DC)S Bo2,
V®(x) = By(x) for all x € D(A) with |x| < r.

Then (4.6) has one nontrivial solution provided i,(By)—1i4s(By;) is

odd.

Theorem 4.4. Assume that
1
() ® e C*(Z) with Z:= D(A]2), ®'(0) =0, ®"(x) exists and is
bounded for x € X,

(i) there exist By, By € Ly(X) with ig(By) = is(By), va(By)=0
and B : X — LX), C: X — X such that

®'(x) = B(x)x + C(x) for any x,
B; < B(x) < By, C(x) is bounded, 4.7)
(iii) with By = ®"(0), we have
ia(By) ¢ [ia(By), ia(By)+va(Bo)l.
Then (4.2) has a nontrivial solution x = x.

Under the further assumption that

(iv) va(By) =0 and |ig(B)-ia(By)| 2 va(®"(xg)), (4.2) has two

nontrivial solutions.
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Theorem 4.5 [11, Theorem 8.5.1]. Assume that ® e C'(Z, R?)

satisfies (@) and
(@3) O(-x) = D(x), Vx € Z,

(®,) ® e C%(Z) and there exist B: Z — LX) and M >0 with

|]§(x)| < M such that
®"(x)(u, v) = (B(x)u, v), Vx,u,veZ, (4.8)
and let By = B(0) with v4(By) = 0.

Then (4.6) has |iz(Bgy) —i4(By )| distinct pairs of nontrivial solutions.
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