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Economic dispatch (ED) problem exhibits highly non-
linear characteristics, such as prohibited operating 
zone, ramp rate limits and non-smooth property. Due 
to its nonlinear characteristics, it is hard to achieve 
the expected solution by classical methods. To over-
come the challenging difficulty, an improved optimi-
zation algorithm based on kinetic-molecular theory 
(KMTOA) was proposed to solve the ED problem in 
this article. Memory principle is employed into the 
improved algorithm. By accepting strengthened or 
weakened stimulus strength, the memory is divided in-
to four states; instant-term, short-term, long-term and 
forgotten states to update the memory value iterati-
vely. In this way, more and more elites appear in the 
long-term memory library. Simultaneously, the impro-
ved KMTOA, according to the elite population-based 
guide on the other population, enhances the search 
ability and avoids the premature convergence which 
usually suffered in traditional KMTOA. The designs 
are able to enhance the performance of KMTOA, 
which has been demonstrated on 12 benchmark func-
tions. To validate the proposed algorithm, we also use 
three different systems to demonstrate its efficiency 
and feasibility in solving the ED problem. The exper-
imental results show that the improved KMTOA can 
achieve higher quality solutions in ED problems. 
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TO improve the effectiveness and efficiency of a given 

industrial system, several optimization techniques are 

employed, which achieves the ultimate goal of the sys-

tem. They are also widely used in industrial fields, espe-

cially in the energy industry and other major industries, 

including telecommunications, transportation, manufac-

turing, and so on
1
. 

 In the electric power system operation, the objective of 

the economic dispatch (ED) problem is to determine the 

outputs of all generating units from a system, with mini-

mum fuel cost and meeting the required constraints. The 

characteristics of the ED problem presented are highly 

nonlinear due to the valve-point effect loadings, rate ramp 

limits, etc. The complexity of ED problems depends on the 

scale of the system
2
. Optimal allocation of generating 

units can guarantee the system load to be the most eco-

nomical. Traditionally, the ED problem can be solved by 

classical mathematical programming methods, such as the 

interior point method
3
, the linear programming method

4
, 

the dynamic programming method
5
, and so on. However, 

the deterministic numerical methods are not effective for 

non-smooth and non-convex cost function. In order to 

overcome the shortcoming of the nonlinear characteristic 

of practical power systems, a large number of heuristics 

and other computer intelligence methods have been de-

veloped to solve ED problems. 

 The current mainstream heuristic algorithms can be  

divided into three main categories. The first optimization 

algorithm simulates the natural evolution law. Genetic  

algorithm (GA)
6
 is a heuristic search algorithm inspired 

by Darwin’s evolutionary theory and learning from the 

biological evolution process. GA
7
 can find the global op-

timal solution of the optimization problem, but it has the 

shortcomings of slow convergence and premature con-

vergence. Subbaraj et al.
8
 use Taguchi method to propose 

Taguchi self-adaptive real-coded genetic algorithm 

(TSARGA) which can exploit the potential offspring. 

Training on the basis of GA
9
, artificial neural network 

(ANN) is proposed. Different evolution (DE)
10,11

, which 

is similar to the principle of GA, is proposed by introduc-

ing differential strategy. Ant colony optimization (ACO) 

algorithm
12

 is a probabilistic algorithm for finding opti-

mal paths. The second optimization algorithm simulates 

the living habits and activities of biological populations. 

Particle swarm optimization (PSO)
13–16

 is based on the 

predatory behaviour of birds and has very high speed to 

the optimal solution, but it is easy to produce premature 

convergence. Grey wolf optimization (GWO)
17

 is pro-

posed according to the predatory behaviour of wolves. 

The firefly algorithm (FA)
18

 is derived from simulating 

the natural phenomena of fireflies in the night. The algo-

rithm is easy to operate and implement, however, it also 

gets stuck in local optima value easily due to excessive 

reliance on excellent individuals. The third optimization  

algorithm simulates physical laws or physical phenomena. 
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Gravitation search algorithm (GSA)
19

 is a swarm intelli-

gence optimization method derived from the simulation 

of gravitation in physics. The algorithm has a good effect 

on optimization accuracy and convergence speed, but 

GSA also has the shortcomings of poor local optimization 

ability and premature convergence. There are other algo-

rithms for solving such problems. Immune algorithm 

(IA)
20

 which is based on the principle of the biological 

immune system is proposed. Nandan
21

 proposed a fuzzy 

reinforcement learning approach (MAFRL), which is  

effective for solving unit commitment problem (UCP). 

 In view of the significance of heuristic algorithm, the 

KMTOA, a physics-inspired algorithm, was put forward 

first by Chao-dong Fan in 2013 and applied in optimizing 

the problem of test function
22

. KMTOA takes into  

account the convergence and diversity of the population 

on a better condition. While the fitness value converged 

rapidly, the algorithm can avoid falling into local extre-

mum as far as possible and show good performance. Alt-

hough KMTOA has favourable performance, it still has 

some shortcomings. For example, it is slightly one-sided 

because it only relies on the current best individual to 

guide the searching process. When a problem has only 

extreme values, the efficiency of the algorithm is good. 

However, when the question includes a plurality of local 

extreme values, the searching mechanism seriously  

affects the efficiency of the algorithm. 

 To overcome the shortcoming of KMTOA, the princi-

ple of memory is introduced into the algorithm. Molecu-

lar individuals are divided into individual long memory 

library and short memory library, instantaneous memory 

library, forgetting memory library according to the calcu-

lation of the memory value. The memory value of every 

individual is updated continuously according to the model 

of updating memory and the model of forgotten attenua-

tion. It can improve the diversity of the population. To 

avoid falling into local optimum, the guiding strategy of 

memory is designed. It uses memory leader selection strat-

egy to guide other molecules. The guided process can be 

achieved by the random individual whose memory value is 

higher than the long-term memory group. Hence, this paper 

proposes an optimization algorithm based on kinetic-

molecular theory with artificial memory (AMKMTOA). 

The experimental results show that the AMKMTOA not 

only has better accuracy and stability, but also achieves 

satisfactory results for solving the ED problem. 

The model of economic dispatch problem 

In ED problem, the main target is optimizing the combi-

nation of power generation to minimize the total fuel 

cost. In the optimized process, equality constraints and 

inequality constraints should be satisfied. 

 In short, the total cost function of generation units is  

usually formulated into a smooth and single function, 

such as eq. (1) 

 
1

min ( ),
n

i i

i

f F P


  (1) 

 

where Fi(Pi) is the fuel cost equation, in $/h, for ith unit. 

 At the same time, the fuel cost function can be defined 

as smooth or non-smooth. 

 If the valve-point effects are not taken into the power 

system, the fuel cost function can be modelled by a smooth 

and quadratic polynomial equation, such as eq. (2) 

 

 2( ) ,i i i i i i iF P P P      (2) 

 

where i, i and i are the fuel cost coefficients of the  

ith unit. 

 If the valve-point effects are considered, the fuel cost 

function for the ith unit includes a sine factor. It can be 

formulated by a non-smooth and quadratic polynomial 

function, which is shown in eq. (3). 
 

 
2 min( ) | sin( ( )) |,i i i i i i i i i iF P P P P P          (3) 

 

where i and i are the coefficients of the ith unit reflect-

ing the valve-point effects. 

 The constraints of the ED problem can be expressed by 

relations (4)–(9). 
 

(i) Minimum and maximum of operating limits 
 

 
min max , 1,2,..., ,i i iP P P i n    (4) 

 

where 
min

iP and 
max

iP  represent the minimum and maxi-

mum operating power limits of the ith unit. 
 

(ii) The ramp-rate limits of the generator. 
 

 
0 ,i i i iLR P P UR     (5) 

 

where 
0

iP  is the output power of the ith unit in the previous 

hours. URi and DRi are the down-ramp limit and up-ramp 

limit of the ith generator (MW/h). The ramp-rate limits 

are shown as inequality (eq. (5)). Combining the relations 

(4)–(5), the following output power (Pi) limits for the ith 

unit, can be re-formulated as inequality (eq. (6)) 
 

 
min max ,i i iPo P Po   (6) 

 

where 
min min 0min( , )i i i iPo p P LR   and 

max
iPo   

max 0max( , ).i i ip P UR  
 

(iii) For the ith unit operating zones considering the  

prohibited zones, the relations are shown as inequality. 
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where Ki is the number of prohibited zones of the ith unit. 

,
l

i kP  and ,
u

i kP  are the lower and upper boundary of the mth 

prohibited operation zones of the ith unit. 

 

(iv) Power balance constraints: The total generation 

should satisfy the total demand and the transmission loss 

as shown in eq. (8). 

 

 
1

,
n

i d l

i

P P P


   (8) 

 

where Pd is the load demand of the power system, in 

MW. Pl is the transmission line losses, in MW. 

 The transmission line losses at the entire system are a 

quadratic function in relation to Pi, which can be calcu-

lated by B-matrix coefficients (Kron’s loss formula) as 

eq. (9). 
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where bij is an element of the loss coefficient matrix  

of size n × n, bi0 an element of the loss coefficient vector 

of size n × 1 and b00 is the loss coefficient constant. 

An optimized algorithm based on  
kinetic-molecular theory 

In the population-based optimization, the algorithm, by 

some search strategy, converges to the optimal solution 

according to the value of the objective function which 

starts from a random point of the feasible region. Each 

algorithm uses different searching strategies depending 

on various principles. The KMTOA, inspired by the  

kinetic-molecular theory, is put forward as a global  

optimized algorithm. In KMTOA, each solution of the 

problem is regarded as a molecule. The current optimal 

individual guides each molecule in the attraction–

repulsion molecule to complete the searching process. To 

enhance the ability of jumping out of the local extremum, 

the algorithm adds into random disturbances for the bal-

anced molecule by simulating the thermal motion of mol-

ecules. Based on molecular interactions and thermal 

motion mechanism, KMTOA can arrive at a better com-

promise between convergence and population diversity in 

the searching process. 

KMTOA model 

Assume that the total number of molecules is n and the 

problem of dimension is d. The position and quality of 

the ith molecule are Xi and Mi. The position and quality  

of the current best molecule are Xbest and Mbest. Pattraction is 

the probability of the current optimal molecule for  

attracting the molecule. Preplusion is the probability of the 

current optimal molecule for repelling the molecule. Pwave 

is the probability of the current optimal molecule for the 

balanced molecule (Pattraction + Preplusion + Pwave = 1). When 

the molecule is balanced, it is added into the random  

disturbance in order to enhance the global search capability 

of the algorithm. The KMTOA can be briefly described 

as follows: 
 

When rand < Pattraction (rand is the random variable from 

0 to 1), the ith molecule is attracted by the current opti-

mal molecule. The attracted acceleration can be formulat-

ed as eq. (10). 
 

 best best
best best

( )
( ),i i

i i
i

GM M X X
a GM X X

M


    (10) 

 

where G is the gravitational constant. 

 When Pattraction < rand  (Pattraction + Prepulsion) (rand is 

the random variable from 0 to 1), the ith molecule is  

repelled by the current optimal molecule. The repulsive 

acceleration can be formulated as eq. (11). 
 

 best best
best best

( )
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i i
i
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M


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 (11) 
 

When (Pattraction + Prepulsion) < rand  1 (rand is the ran-

dom variable from 0 to 1), the KMTOA adds the random 

disturbance operator to prevent the molecule to get stuck 

in local optima. The disturbed acceleration can be formu-

lated as eq. (12). 
 

 
max min( ) (0,1)

0 ,

j j m

ij

m

A X X N rand P
a
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 (12) 

 

where aij is the jth dimension of the molecule Xi , Pm the 

mutable rate, (rand is the random variable from 0 to 1), 

Xmax j and Xmin j respectively, stand for the upper bound 

and lower bound of the jth dimension. N(0,1) is a random  

variable satisfying the standard normal distribution, 

A(A = 1–0.9t/T) the vibrant amplitude; where t the current 

number of iterations and T is the total number of itera-

tions. 

 The speed and position can be defined by the accelera-

tion of the molecule. The updated function can be formu-

lated as eq. (13). 
 

 

0.9 0.5
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i i i
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X t X t V t

  
    

 
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 (13) 

Comparison with gravitational search algorithm 

The differences between the two algorithms are as: (1) 

Gravitational search algorithm (GSA) is a random  
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searching algorithm which originates from the physics 

gravity by simulating the phenomenon. KMTOA is a 

global search algorithm and is based on the properties 

and laws of molecular thermal motion. (2) For GSA, par-

ticles can be attracted to each other through gravity and 

move by following the rule of kinematics. A particle that 

has greater fitness value has larger mass quality. Hence 

all particles can move towards the particle which has the 

largest quality and converge to the optimal solution. 

However, in view of the attraction–repulsion rule  

between molecules in molecular dynamics theory for 

KMTOA, the conditions that the molecules are subjected 

to gravitation, repulsion and no force are put forward. For 

molecules without force, the particles can jump out of the 

local solution by simulating the irregular thermal motion 

of molecules. (3) The search particles in GSA are a group 

of objects running in space. However, the KMTOA uses a 

single molecule to complete the search process. 

An optimized algorithm based on  
kinetic-molecular theory with artificial memory 

Fundamentally, AMKMTOA sets up the cell of memory 

and divides the population into four stages, such as  

instant-term, short-term, long-term and forgotten process, 

by calculating the value of memory. If the current indi-

vidual is not forgotten, an individual which comes from 

the long-term population is randomly selected to achieve 

direct search. If it is forgotten, an individual, by moving 

randomly, will be reminded at some point. At the same 

time, it constantly updates the memory value according to 

the intensity of the external stimulus. The following part 

is designed for the key operator of AMKMTOA. 

Model of updating memory 

The external stimulus includes the ordinary and typical 

stimulate. If the individual moves to a new better posi-

tion, it shows that the event is beneficial for searching the 

global optimal solution. It will be regarded as the ordi-

nary stimulate and increase the value of memory. On the 

contrary, it will also be regarded as the typical stimulate. 

The model of calculating the value of memory is shown 

as eq. (14). 
 

 
1 1( ( ) ( )),t t t t

i i i im m h f X f X     (14) 

 

where 
t
im is the value of memory in the t period, ( )t

if X  

the objective function of the t period and h(h > 0) is the  

adjust coefficient stimulate and the value is selected by 

the specific situation. 

Model of the forgotten attenuation 

The memory of instant-term, short-term and long-term 

will decrease inch by inch with the passage of time. The 

function of the damped memory is shown as eq. (15)  

according to the forgetting curve of H. Ebbinghaus. 
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where i, s and l are the state of the memory of instant-

term, short-term and long-term respectively. ms, ml are the 

critical constants of the short-term and long-term 

memory. ( > 0) is the adjust coefficient of the speeding 

of the damped memory. 

Guiding strategy of memory 

Since those entering long-term memory are better indi-

viduals, an individual from long-term memory is randomly 

chosen according to the guiding strategy of memory. The 

selected individual guides the others to achieve the 

searching progress. The method can avoid the misleading 

of the traditional KMTOA because of the guidance from 

long-term memory. The guiding strategy of memory is 

shown as eq. (16). If ( )t
if X  is smaller and t

im  is larger, 

it explains that the individual is better. Otherwise, the  

individual is worse. 

 

 
( )

,
t
i

t
i

f X

m
    (16) 

 

where  is a critical constant. 

Detailed steps of AMKMTOA 

The detailed steps of AMKMTOA are listed as follows. 

Step 1. Initialize the population and parameters. Step 2. 

For each individual, calculate the optimal value of the  

objective function and compute the value of memory 

based on eq. (14). At the same time, the value of damped 

memory is also computed according to eq. (15). Step 3. 

Based on the guiding strategy of memory eq. (16), ran-

domly select an elite-individual (Xbest) which comes from 

the long-term memory. Step 4. If the condition of attrac-

tion is satisfied, calculate the attracted acceleration based 

on eq. (10). If the condition of repulsion is met, calculate 

the repulsive acceleration according to eq. (11). Other-

wise, the molecular thermal motion operator will be car-

ried out, and the disturbed acceleration can be calculated 

by eq. (12). Step 5. Calculate the speed and position of 

each individual by eq. (13) and save the optimal individ-

ual from the population. Step 6. Check termination condi-

tion. If the counter k of the generation is achieved at 

http://dict.youdao.com/w/inch/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/by/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/inch/#keyfrom=E2Ctranslation
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maximum generation value, then output the solution. 

Otherwise, return to step 2. 

Design and analysis of key parameters 

For the experiment, the parameters of AMKMTOA are 

set as follows: the maximum number of function evalua-

tion is 100,000 (the population size is 50 and the maxi-

mum number of iterations is 2000); Mbest and the mutable 

rate (Pm) are set to 2 and 0.05 respectively. G is the gravi-

tational constant; h,  are set to random numbers (from 0 

to 1), 0.05, 0.01 respectively. Pattraction, Preplusion and Pwave 

are the key parameters and decide the next movement of 

the individual, which greatly affects the performance and 

efficiency of AMKMTOA. Hence the key parameters of 

AMKMTOA are investigated. The mean and standard  

deviation of the best solutions are obtained from 50 trial 

runs. 

 Since F5 is relatively smooth near the optimal value, it 

is difficult to identify the search direction. F8 is the glob-

al extreme point and all the local extreme points around 

them are far away from them; so it is easy to fall into the 

wrong collection in the process of searching for the optimal 

solution convergent direction. In view of the complexity 

of F5 and F8, this section selects the representative func-

tions to test different values of Pattraction, Preplusion and Pwave. 

In order to facilitate the discussion, firstly, Preplusion = 0.2, 

Preplusion = 0.4 and Pwave is selected from 0 to 0.1 (by ge-

netic algorithm, the mutation rate is very small). The  

value of Pattraction is determined by Pattraction = 1 – Preplusion – 

Pwave. As shown in Tables 1 and 2, for Preplusion = 0.2 and 

Preplusion = 0.4, when Pwave takes 0.02–0.06, AMKMTOA 

can achieve better results. 

 In order to determine the reasonable values of Pattraction, 

Preplusion values of 0–0.94 and Pwave = 0.06 are used. The 

optimization results of AMKMTOA are compared. Table 3 

shows that when Preplusion takes 0.1–0.3, the optimization 

results of F5 and F8 are better. In conclusion, Pattraction = 

1 – Preplusion – Pwave = 0.64, Preplusion = 0.3, Pwave = 0.06 are 

more reasonable. 

Simulation experiments 

To evaluate the performance of AMKMTOA, we first 

tested AMKMTOA based on 12 benchmark functions, 

which are the classical functions utilized in many  

studies. Then AMKMTOA was used to solve the ED 

problems. Each algorithm was run 50 times on each 

benchmark function and the results of algorithms were 

analysed using statistic measures (mean and standard de-

viation). In solving the ED problem, three cases with dif-

ferent number of units were used. The cases include  

6-unit system, 13-unit system and 40-unit system for  

verifying the performance of AMKMTOA over practical 

problems. 

Validation of AMKMTOA based on test  
benchmark function 

Test of low-dimensional function 

In this section, AMKMTOA is compared with the tradi-

tional KMTOA
22

, grey Wolf Optimizer (GWO)
23

 and dif-

ferential evolution (DE)
24

, particle swarm optimization 

with random position (RPPSO)
25

. The comparison of  

algorithms was validated on 12 benchmark functions 

from reference 22. The benchmark functions used mini-

mization functions and can be divided into three groups: 

F1(x) – F6(x) are the unimodal benchmark functions, 

F7(x) – F10(x) are the multimodal benchmark functions, 

F11(x) – F12(x) are the fixed-dimension benchmark func-

tions. 

 In Table 4, the average values, standard values and 

CUP Time are presented. The table illustrates that 

AMKMTOA was superior to KMTOA considering the 

quality of the results. Its performance and time was better 

than the other algorithm on the whole benchmark func-

tion. The leading individuals are from long-term library 

and the selection scope of leading elites is narrowed. 

Hence, the optimized result is more stable and the robust-

ness of the proposed algorithm is better. 

 The largest difference in performance between 

AMKMTOA and other algorithms can be found in F4, F5 

and F7. At the same time, the accuracy and stability of 

AMKMTOA is obviously improved when compared to 

the four algorithms. 

Analysis of convergence 

In verifying the AMKMTOA, the population size is 50 

and the maximum number of iterations is 2000. At the 

same time, each algorithm is linked with various parame-

ters, which have a significant impact on the desired  

results. The identical parameters of each algorithm were 

set as: (i). RPPSO:  = (0.9–0.5*t/T), c1
 
= c2 = 2; (ii) DE: 

Fscaling = 0.9, Pcross = 0.05; (iii) GWO:  = [2, 0]; (iv) 

KMTOA: pm1 = 0.64, pm2 = 0.3 and (v) AMKMTOA: 

pm1 = 0.64, pm2 = 0.3. 

 In Figure 1, it is shown that the convergence speed of 

AMKMTOA is the fastest. The most obvious difference 

is reflected in F7 that tends to find the global optimum 

faster than the others. In short, AMKMTOA performed 

better with convergent characteristics and achieved the 

solution with high accuracy. 

Analysis of high-dimensional function 

To test the ability of AMKMTOA for complex problems 

and analyse the influence on the algorithm, the algorithm 

was tested on high dimensional functions. The complexity 

of the algorithm was analysed from two aspects, the  
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average value and average running time of the algorithm. 

The average value shows the optimization precision of 

the algorithm. The average running time is average time 

required for completion of a search algorithm. The high 

dimensional functions include noisy quadric (unimodal 

benchmark functions and special noise function) and  

Rastrigin (multimodal benchmark functions). 

 

 
Table 1. The Pwave effects on AMKMTOA 

 Preplusion = 0.2, Pattraction = 1 – Preplusion – Pwave 
 

Pwave F5 (Rosenbrock) F8 (Rastrigin) 
 

0.00 2.5485 (44.6098) –1.0741E+03 (8.1053E-03) 

0.01 1.3609E–01 (1.8201) –1.1991E+04 (6.1231E-04) 

0.02 7.3604E–02 (2.9133) –1.2107 E+04 (6.1310E-04) 

0.03 7.6448E–02 (1.2380) –1.2319 E+04 (4.8252E-04) 

0.04 7.4502E–02 (1.9465) –1.2408 E+04 (5.7590E-04) 

0.05 7.3444E–02 (3.6323)  –1.2445 E+04 (5.6380E-04) 

0.06 6.8109E–02(2.6199) –1.2468 E+04 (6.6896E-04) 

0.07 1.1473E–01 (1.6324) –1.2453 E+04 (5.3722E-04) 

0.08 7.0022E–02 (3.6951) –1.2442 E+04 (7.5710E-04) 

0.09 7.2944E–02 (2.4292) –1.2315 E+04 (4.3214E-04) 

0.10 1.5405E–01 (2.1152) –1.2308 E+04 (6.6732E-04) 

 

 

 

Table 2. The Pwave effects on AMKMTOA 

 Preplusion = 0.4, Pattraction = 1 – Preplusion – Pwave 
 

Pwave F5 (Rosenbrock) F8 (Rastrigin) 
 

0.00 1.6860(3.6190) –1.0995E+03 (7.4794E-03) 

0.01 1.4143E–04 (0.7997) –1.1259E+04 (4.7708E-04) 

0.02 1.6288E–04 (0.4883) –1.1882E+04 (5.7566E-04) 

0.03 2.6444E–04 (0.9159) –1.2080 E+04 (8.0714E-04) 

0.04 1.9127E–04 (0.6037) –1.2141E+04 (4.6174E-04) 

0.05 1.8390E–04 (0.4854)  –1.2077 E+04 (4.5774E-04) 

0.06 1.6498E–04 (0.4536) –1.2341E+4 (5.1544E-04) 

0.07 1.9147E–04 (0.3518) –1.2315E+04 (5.3364E-04) 

0.08 2.7324E–03 (0.9044) –1.2255 E+04 (4.9324E-04) 

0.09 3.3911E–03 (1.8089) –1.2104E+04 (5.6963E-04) 

0.10 3.2563E–03 (1.2563) –1.2005E+04 (6.3311E-04) 

 

 

 

Table 3. The Pattraction and Preplusion effects on AMKMTOA 

 Pwave = 0.06, Pattraction = 1 – Preplusion – Pwave 
 

Preplusion F5 (Rosenbrock) F8 (Rastrigin) 
 

0 3.1805 (2.5361) –1.2366E+04 (1.7514E-03) 

0.1 0.1066 (1.5987) –1.2187E+04 (2.0183E-04) 

0.2 6.8109E–02 (2.6199) –1.2468E+04 (5.7003E-04) 

0.3 1.5109E–04 (0.4242) –1.2541E+04 (4.1544E-04) 

0.4 1.6498E–04 (0.4536) –1.2441E+04 (5.1544E-04) 

0.5 2.0961 E–03 (1.2305) –1.1988E+04 (7.3462E-04) 

0.6 1.0014 E–03 (4.2361) –1.2373E+04 (7.9635E-04) 

0.7 0.3885 E–03 (3.0625) –1.2229E+04 (1.6896E-03) 

0.8 0.4351 (31.2046) –1.1017E+04 (12.0123) 

0.9 32.5624 (66.1132) –9.1722E+03 (1.5632) 

0.94 381.7382 (561.2315) –7.1125E+03 (9.2380) 

 The results of AMKMTOA are compared with 

KMTOA, GWO, DE, RRPSO. The maximum iteration 

and population size are respectively set to 2000 and 50. 

Table 5 shows the average values, standard values and 

CPU time are given in Supplementary Table 1. It illus-

trates that the performance of AMKMTOA is superior to 

other algorithms from 100 dimension to 500 dimension. It 

also fully illustrates the advantages of the algorithm in 

solving complex problems. 

Economic dispatch problem solved by 
AMKMTOA 

For this part, we need to apply AMKMTOA to solve the 

ED problem in particle issue. In order to verify the feasi-

bility and effectiveness of AMKMTOA, there are three 

cases to solve the ED problem. For each test problem, the 

parameter of the population size was set to 50 and the ex-

periments were conducted in 100 trails. The scheduling 

time horizon for the study was 24 h. For the convergence 

curves of the three cases, the maximum iterations of algo-

rithms which include AMKMTOA, KMTOA, GSA, DE, 

RPPSO were set to 200, 500 and 2000. The population 

size of all algorithms was set to 50. The algorithms were 

executed with the following parameters: (i) RPPSO:  = 

(0.9–0.5*t/T), c1 = c2 = 2; (ii) DE: Fscaling = 0.9, Pcross = 

0.05; (iii) GSA: m = 100, G0 = 100,  = 20; (iv) KMTOA: 

pm1 = 0.64, pm2 = 0.3; (v) AMKMTOA: pm1 = 0.64, 

pm2 = 0.3. 

 The sets of three cases were conducted and the experi-

mental results of the proposed algorithm were compared 

with various existing algorithms. 

 Case I: Six-unit system with a smooth objective func-

tion which includes transmission loss, rate ramp limits 

and prohibited zones was considered. The load demand of 

the 6-unit system was 1263 MW. 

 Case II: Thirteen-unit system with a non-smooth objec-

tive including value point loading effect was considered. 

The load demand of the thirteen-unit system was 

1800 MW. 

 Case III: The value point loading effect was taken into 

account by a 40-unit system. At the same time, it was  

also a non-smooth objective and the load demand of the 

40-unit system was 10,500 MW. 

 

Case I: For the 6-unit system, several constraints was 

considered, but the value point loading effect was not 

taken into account. The date and B’s loss coefficient matrix 

of the objective function are from reference 6. Table 5, 

which includes the best, worst and average costs, presents 

the results of the 6-unit system. The standard deviation, 

CPU time, FE are also shown in Table 6. At the same 

time, the results of AMKMTOA are compared to those of 

other algorithms including GA
6
, DE

10
, PSO

6
, ICA-PSO

13
, 

SA-PSO
14

, IA-EDP
20

, MAFRL
21 

and KMTOA. The

http://www.currentscience.ac.in/Volumes/115/03/0454-suppl.pdf
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Table 4. Result of benchmark function 

No. Function name Value AMKMTOA KMTOA22 GWO23 DE24 RPPSO25 

 

F1 Sphere Mean 0 0 9.2802E-145 1.0544E-11 7.6068E-11 

  Standard 0 0 2.2965E-144 7.9337E-12 1.5758E-10 

  Time(s) 0.8847 0.9006 1.8050 3.2321 1.4934 
 

F2 Schwefel P2.2 Mean 0 0 2.3075E-83 1.5298E-7 5.5188E-8 

  Standard 0 0 3.8095E-83 5.8829E-8 5.8718E-8 

  Time(s) 0.9285 0.9305 1.9101 3.1456 1.4570 
 

F3 Rotated hyper-ellipoid Mean 0 0 2.5643E-42 1.6800E+4 1.6706E+3 

  Standard 0 0 1.43993E-41 3.2821E+3 2.4112E+3 

  Time(s) 1.5886 1.6038 5.1576 3.7862 2.1279 
 

F4 Nosiy quardric Mean 9.0211E-7 2.7876E-4 1.9499E-4 0.0423 0.0174 

  Standard 2.3801E-4 3.0964E-4 9.3240E-5 0.0101 0.0052 

  Time(s) 1.5511 1.5873 2.3287 3.6084 1.5531 
 

F5 Rosenbrock Mean 1.5109E-4 0.2126 26.1663 19.3867 82.9348 

  Standard 0.4242 0.4688 0.8235 24.1749 216.8880 

  Time(s) 1.1827 1.1870 2.4434 3.1968 1.5014 
 

F6 Step Mean 0 0 0.4575 0 0 

  Standard 0 0 0.3513 0 0 

  Time(s) 1.1447 1.1558 1.6783 3.1762 1.4840 
 

F7 Schwefel Mean –1.2541E+4 –1.0918E+4 –6.0670E+3 –1.1845E+4 –1.0296E+4 

  Standard 4.1544E-4 420.1210 548.2402 266.3424 436.0910 

  Time(s) 1.4418 1.4533 1.8640 3.3208 1.6118 
 

F8 Rastrigin Mean 0 0 0 0.9332 205.0490 

  Standard 0 0 0 1.1262 37.9783 

  Time(s) 1.2511 1.2537 2.1477 3.2720 1.4892 
 

F9 Ackly Mean 0 0 7.9936E-15 2.7220E-6 13.0697 

  Standard 0 0 3.2059E-30 2.7655E-6 1.2784 

  Time(s) 1.4483 1.4666 2.3254 3.3088 1.5774 
 

F10 Griewank Mean 0 0 0 1.2031E-5 0.0086 

  Standard 0 0 0 5.3477E-5 0.0103 

  Time(s) 1.4976 1.5063 1.9811 3.3484 1.6554 
 

F11 Branin Mean 0.3979 0.3979 0.3979 0.3980 0.3979 

  Standard 0 0 1.6920E-16 2.4597E-4 0 

  Time(s) 0.7966 0.8023 1.0897 2.9927 1.2301 
 

F12 Shubert Mean –186.7309 –186.7309 –186.7309 –186.7302 –186.7309 

  Standard 0 0 8.8388E-5 0.0031 0 

  Time(s) 1.1580 1.1639 1.4065 3.0666 1.2464 

 

 

 

comparative statistics results are summarized in Table 6. 

It illustrates that all performance indices of the proposed 

algorithm are obviously better than the others except the 

fitness evolution. Table 6 shows the power of each gener-

ation, transmission loss, and total cost achieved by 

AMKMTOA for the test system. In addition, the experi-

mental results of AMKMTOA are also compared with 

GA
6
, PSO

6
, CBA

26
, IA-EDP

20 
and KMTOA. This table 

explains that the total cost of AMKMTOA is much less 

than the other methods. 

 The convergence characteristic of AMKMTOA for this 

case is shown in Figure 2, and the proposed algorithm is 

compared with a few classical optimization algorithms. 

The simulation test shows that AMKMTOA has better 

convergence accuracy and high evolution velocity when 

compared to algorithms. By means of simulation, it 

proves the effectiveness and availability of AMKMTOA 

for the 6-unit system. 

 

Case II: To validate the performance of this optimiza-

tion method for medium size, the 13 generating units are 

regarded as the second test system because of the  

increased complexity. The value point loading effect is 

taken into account. The date of fuel cost function is from 

ref. 27. To verify the proposed algorithm for the 13-unit 

system, the experimental results are compared with 

methods which include TSARGA
8
, DE

10
, DECDM

27
, 

HMAPSO
15

, ICA-PSO
13

, SOMA
28

, IA-EDP
20

, MAFRL
21 

and KMTOA. The comparative results are presented in 

Table 7. The best, worst and average solution, standard 

value, CPU time and FE are contained in this table. By 

analysing the results for all optimization algorithms, we
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Figure 1. Parameter space of Sphere, Nosiy Quardric, Schwefel, Branin (F1, F4, F7, F11). 
 

 

 
 

Figure 2. Convergences curves for 6-unit system. 

 

 

can conclude that AMKMTOA is superior to the other 

methods in terms of the performance indices. The CPU 

time of AMKMTOA is less than the six methods expect 

ICAPAO. At the same time, Table 8 also shows the com-

parison of the power of each generation and total cost for 

the proposed algorithms, which include QPSO
29

, DFA
18

, 

IA-EDP
20

, CBA
26

, KMTOA. It illustrates that the total 

price of AMKMTOA is cheaper than the others. 

 Figure 3 presents the comparison of convergence 

curves for the proposed method and some typical  

methods. The simulation consequence shows that 

AMKMTOA has characteristics with higher convergence 

precision and faster convergence speed. It is better than 

each classic method. Simulation, proves the feasibility 

and validity of AMKMTOA for the 13-unit system. This 

is a single step forward to solve the ED position. 

 

Case III: To explore the feasibility of AMKMTOA in 

large scale power systems, the system is made up of the 

40 generating units and has value point loading effects. 

The date of 40-unit system is from reference 27. The re-

sults of the proposed algorithm are also compared with 

the classical algorithms, such as TSARGA
8
, DE

10
, 

DECDM
27

, FAPSO-NM
16

, ICA-PSO
13

, SOMA
28

, IA-

EDP
20

,
 
MAFRL

21 
and KMTOA. The statistical conclusion 

is shown in Table 9. From this table, we see that the syn-

thesized performance of AMKMTOA is still the best
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Table 5. Comparison of 6-unit system results (FE = fitness evolution) 

Problem/algorithm Best Worst Mean Standard CPU time (s) FE 
 

GA6 15,459.00 15,469.00 15,469.00 41.58 – 20,000 

DE10 15,449.77 15,449.87 15,449.78 – 0.03 36,000 

PSO6 15,450.00 15,492.00 15,454.00 14.86 – 20,000 

ICA–PSO13 15,443.24 15,444.33 15,443.97 – – 20,000 

SA–PSO14 15,447 15,455 15,447 2.528 7.58 20,000 

IA–EDP20 15,442.9369 15,449.0294 15,444.0361 1.04109 0.769 3,000 

MAFRL21 15,441.2610 15,444.2300 15,442.3206 0.8010 0.53 5,000 

KMTOA 15,442.3462 15,448.9416 15,445.8941 1.0321 0.031 5,000 

AMKMTOA 15,441.2286 15,445.2684 15,442.3082 0.7828 0.025 5,000 

 

 

Table 6. Best results for 6-unit system 

Unit GA6 PSO6 CBA26 IA-EDP20 KMTOA AMKMTOA 
 

1 474.8066 447.4970 447.4187 446.6761 439.3404 447.8336 

2 178.6363 173.3221 172.8255 172.2169 182.7354 173.2712 

3 262.2089 263.4745 264.0759 264.1762 263.4227 263.3539 

4 134.2826 139.0594 139.2469 143.6750 129.2436 138.3466 

5 151.9039 165.4761 165.6526 161.3429 173.3652 165.3621 

6 74.1812 87.1280 86.7652 87.2039 87.1183 87.0027 

Total power (MW) 1276.03 1276.03 1275.376 1275.2910 1275.2462 1275.2041 

Loss power (MW) 13.0217 12.9584 12.9848 12.2903 13.0023 12.2827 

Total cost ($/h) 15,459 15,450 15,450.2381 15,442.9369 15,442.3462 155,441.6478 

 

 

Table 7. Comparison of 13-unit system results 

Problem/algorithm Best Worst Mean Standard CPU time (s) FE 
 

TSARGA8 17,963.94 18,089.61 17,974.31 3.18 17.69 50,000 

DE10 17,963.83 17,975.36 17,965.48 – 1.05 130,000 

DECDM27 17,961.9440 18,061.4110 17,974.6869 20.3066 12.6 25,000 

HMAPSO15 17,969.31 17,990.31 17,969.31 – – 280,000 

ICA–PSO13 17,960.37 17,978.14 17,967.94 1.92 0.12 40,000 

SOMA28 17,967.4219 18,017.6161 17,985.3242 20.6772 – 25,000 

IA–EDP20 17,961.4331 18,052.3155 17,980.1898 21.6666 0.876 25,000 

MAFRL21 17,960.1200 17,964.6012 17,961.9231 0.8720 1.53 10,000 

KMTOA 17,961.0670 17,967.2960 17,962.5110 1.0262 0.7555 10,000 

AMKMTOA 17,960.1150 17,964.7420 17,961.7863 0.9061 0.6393 10,000 

 

 
Table 8. Best results for 13-unit system 

Unit QPSO29 DFA18 IA-EDP20 CBA26 KMTOA AMKMTOA 
 

 1 538.5600 628.31851 628.3066 628.3185 628.3128 628.3191 

 2 224.7000 149.59963 149.5246 149.5997 149.5654 149.6342 

 3 150.0900 222.74899 223.1148 222.7491 222.7908 222.7142 

 4 109.8700 109.86655 109.8754 109.8666 109.8662 109.8665 

 5 109.8700 109.86655 109.8489 109.8666 109.8662 109.8665 

 6 109.8700 109.86655 60.0000 109.8666 109.8662 109.8665 

 7 109.8700 109.86655 109.8319 109.8666 109.8662 109.8665 

 8 109.8700 60.00000 109.8434 60.0000 60.0000 60.0000 

 9 109.8700 109.86655 109.8049 109.8663 109.8662 109.8665 

10 77.4100 40.00000 40.0000 40.0000 40.0000 40.0000 

11 40.0000 40.00000 40.0000 40.0000 40.0000 40.0000 

12 55.0100 55.00000 55.0000 55.0000 55.0000 55.0000 

13 55.0100 55.00000 55.0000 55.0000 55.0000 55.0000 

Total power (MW) 1,800.0 1,800.0 1,800.0 1,800.0 1,800.0 1,800.0 

Total cost ($/h) 17,969.0100 17,963.8286 17,961.4331 17,963.8339 17,961.0670 17,960.1150 
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Table 9. Comparison of 40-unit system results 

Problem/algorithm Best Worst Mean Standard CPU time (s) FE 
 

TSARGA7 121,463.07 124,296.54 122,292.31 315.18 696.01 25,000 

DE12 121,416.29 121,431.47 121,422.72 – – 240,000 

DECDM23 121,423.4013 121,696.9868 121,526.7330 54.8617 44.3 25,000 

FAPSO-NM11 121,418.3 121,419.8 121,418.803 – 40 60,000 

ICA-PSO8 121,413.20 121,453.56 121,428.14 – 139.92 70,000 

SOMA24 121,418.7856 12,508.3757 121,449.8796 26.8385 – 25,000 

IA-EDP14 121,436.9729 121,648.4401 121,492.7018 182.5274 1.092 24,000 

MAFRL21 121,411.7200 124,115.9012 121,413.4311 1.4856 2.63 10,000 

KMTOA 121,412.3663 121,418.9533 121,415.9608 1.5217 1.4626 25,000 

AMKMTOA 121,411.5644 121,416.6033 121,413.2570 1.4864 1.4461 25,000 

 

 

Table 10. Wilcoxon signed ranks test 

 AMKMTOA versus KMTOA AMKMTOA versus GSA 
 

Test problem P-value R+ R– P-value R+ R– 
 

6-units 4.7387e-06 8688 1412 6.9358e-10 9383 717 

13-units 3.0916e-04 7862 2238 7.3803e-10 9578 522 

40-units 7.6588e-05 8124 1976 4.9752e-10 9644 456 
 

 AMKMTOA versus DE AMKMTOA versus RRPSO 

6-units 3.0123e-11 10100 0 3.0123e-11 10100 0 

13-units 2.9215e-09 9578 521 4.0772e-11 10056 44 

40-units 4.9752e-11 9946 154 3.0199e-11 10100 0 

 

 

 
 

Figure 3. The convergences curves for 13-unit system. 
 

 

 

when compared to others. Of course, the CUP time and 

FE are worse than IA-EDP. Power of each generator is 

given in Supplementary Table 2. It compares AMKMTOA 

with the five optimization algorithms, which are 

EDA/DE
30

, DFA
18

, IA-EDP
20

, CBA
26

 and KMTOA. Com-

parison of the results explains the superiority of 

AMKMTOA for optimizing the 40-unit system. 

 In Figure 4, the simulation consequence indicates that 

AMKMTOA has characteristics with higher convergence 

precision and faster convergence speed. 

 
 

Figure 4. The convergences curves for 40-unit system. 

Wilcoxon signed ranks test of three systems 

To examine the significance of the proposed approach in 

solving the ED problem, the Wilcoxon signed rank test was 

used. The principle of the Wilcoxon signed rank test and 

the meaning of the index is from ref. 31. AMKMTOA was 

compared with KMTOA, GSA, DE and RRPSO. 

 The experiments were conducted in 100 trails. The  

optimized results of five different algorithms were statis-

tically analysed for every trail. The statistical results of 6-

units, 13-units and 40-units were tested by the Wilcoxon 

http://www.currentscience.ac.in/Volumes/115/03/0454-suppl.pdf
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signed rank test. It can be seen from Table 10 that 

AMKMTOA is superior to other algorithms in the ED 

problem. 

Conclusion 

This paper presents an improved algorithm called 

AMKMTOA based on kinetic-molecular theory, which is 

inspired based on the model of artificial memory. This 

algorithm was used to solve the economic dispatch prob-

lem. In the proposed algorithm, we employed the guiding 

strategy of memory which chose randomly, individuals 

from long-term memory to achieve the searching pro-

gress. The improved algorithm has been demonstrated 

very efficiently by testing 12 benchmark functions. When 

compared to the traditional KMTOA, it could greatly  

increase the searching ability and improve the conver-

gence precision. The experiment simulation proved that 

AMKMTOA could achieve a better result when com-

pared to other heuristic algorithms and efficiently deal 

with the constraints in the economic dispatch problem. 
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