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A low-temperature shallow-water hydrothermal vent
field was discovered during the summer of 2010 in the
Faial-Pico channel off the Espalamaca headland, Faial
Island, Azores, Portugal, NE Atlantic. The present study
analyses bacterial communities present in shallow-
water hydrothermal vent of Espalamaca using SSU
rRNA-based clone library approach. Clones of
shallow vent sediment sample revealed the dominance
of Proteobacteria (including «, 7, & 6, ¢ subdivisions)
and Bacteroidetes with 36% and 28% of the whole
community respectively. The dominance of »Proteo-
bacteria is the unique characteristic of this shallow
vent and it coincides with the South Tonga Arc
and Bahia Concepcién (Pacific Ocean), whereas &-
Proteobacteria groups were reported to be high in the
majority of the hydrothermal vents. Though the sam-
pling sites of the venting and non-venting regions of
Espalamaca were only 500 m apart, high variation
(>80%) of phylotypes was found between the regions.

Keywords: Bacterial diversity, clone library, hydro-
thermal vent, phylogeny, shallow water.

MARINE hydrothermal vents are known for their characte-
ristic habitat since the fluids emitted from the vents are
distinguished by high temperatures as well as high con-
centration of CO,, H,S and heavy metals. The vents
occurring at a depth of below 200 m and 0-200 m are de-
fined as deep-sea and shallow hydrothermal vents respec-
tively. Primary productions in deep-sea hydrothermal vent
ecosystems are mainly based on chemolithoautotrophy'?,
whereas shallow-water hydrothermal vent ecosystems are
largely influenced by photosynthesis’. Shallow-water
hydrothermal systems can be described as high-energy
environments, where microbial metabolism is fuelled by
light and chemical energy sources’. Hence, the microbial
communities inhabiting shallow hydrothermal vents
would be different from their deep-sea counterparts, with
a dominance of photosynthetic microbial lineages.

*For correspondence. (e-mail: cmohan@nio.org)
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Though shallow submarine hydrothermal vents are less
understood habitats in the ocean, they have been the
focus of research during the past three decades”.

Low-temperature hydrothermal vents, which form by
the mixing of high-temperature hydrothermal fluids and
sea water, are omnipresent in recent submarine hydro-
thermal systems®. Microorganisms are involved in the
transformation of inorganic compounds released from
hydrothermal vent emissions; hence they are at the basis
of the hydrothermal system food web’. Understanding the
microorganisms present in shallow-water hydrothermal
vents is essential to interpret how they influence biogeo-
chemical cycles. So far culture-independent molecular
technique using 16S rRNA gene has been successfully
studied for investigating the microbial communities in
various hydrothermal systems® ',

Nine shallow-water hydrothermal vent fields have been
identified so far within the Azores Archipelago, Portugal.
When compared to deep-sea counterparts, shallow hydro-
thermal vent regions in the Azorean Islands, Portugal, are
not explored in the aspect of diversity and ecology'®. The
proximity of the Azorean Islands (Portugal) provides
accessible sampling sites for studying microorganisms
inhabiting the hydrothermal vent ecosystems. D. Joao de
Castro seamount (DJCS, located between the islands of
Terceira and Sao Miguel) and Espalamaca (located in
Faial-Pico channel off the Espalamaca headland) are well
documented with regard to culture-dependent microbes' "
from the Azores Island. More recently, molecular diversi-
ty of culture-dependent bacteria was investigated using
16S rRNA gene sequencing from shallow vents in Espa-
lamaca'’. The results indicated that culturable fractions of
Proteobacteria were dominant followed by Bacteroidetes,
Firmicutes and Actinobacteria. Many of them were novel
bacteria with no previous records of their existence in
such environments. However, there are no reports on
culture-independent bacteria based on microbial diversity
in shallow-water hydrothermal vents in the Azores.

In this study, we explore the culture-independent
microbial community structure from the shallow-water
hydrothermal vent of Espalamaca using the 16S rRNA
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gene sequence clone library. The clone library data were
also compared with few similar shallow-water hydro-
thermal vents to reveal the differences in microbial com-
munity pattern. Further, culture-independent community
structure from shallow vent region was compared with
the non-vent region of Espalamaca.

Materials and methods
Site description and sample details

Surface and bottom water as well as sediment samples
were collected from the shallow hydrothermal vent (36 m
depth) and non-vent (38 m depth) sites in Espalamaca
(38°33'N; 28°39'W) during April 2014 by scuba divers
(Figure 1). Sediment samples were collected using sterile
polycarbonate tubes and water samples using Niskin
samplers (2.51 capacity). Samples were immediately
brought to the laboratory at the University of Azores,
Portugal.

Genomic DNA extraction

Sea-water samples (2.51) were filtered using 0.2 um
cellulose nitrate filters (Sartorius, France). Genomic
DNA was extracted using EZNA Water DNA kit (D5525,
Omega) following the manufacturer’s instructions.
Genomic DNA from the sediment samples was extracted
using two steps. The first step was based on the method
of Luna et al.'® with phenol—chloroform method. In the
second step, the DNA samples were purified following
the EZNA soil DNA kit protocol (D5625, Omega). The
presence of genomic DNA was confirmed using 1.0%
agarose gel electrophoresis with 0.5x Tris borate EDTA
(TBE) buffer.

28°50W 28°40W 28’3‘0W

38°35'N

Espalamaca
* Vent Field

Pico

island
Azores
]

)

Figure 1. Sampling location at Espalamaca shallow-water
hydrothermal vent, Azores, Portugal. Asterisk indicates the sampling
site”.
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PCR amplification of 16S rRNA gene and clone
library construction

Bacterial 16S rRNA genes were amplified using eubac-
terial primer sets 27F (5'-AGAGTTTGATCCTGGCTC-
AG-3') and 1492R (5'-GGTTACCTTGTTACGACTT-
3. The polymerase chain reaction (PCR) mixture
(50 pl final volume) contained template DNA (=100 ng),
10x PCR buffer, 40 mM deoxynucleoside triphosphates,
2.5mM MgCl,, 20 pmol of each primer and 1 U Tagq
DNA polymerase (Ambion, Life Technologies). Amplifi-
cation profile consisted of an initial denaturation step
(94°C for 5 min) followed by 30 cycles of denaturation at
94°C for 60 s, annealing at 55°C for 30 s, and extension
at 72°C for 90 s. Final extension was kept at 72°C for
10 min. PCR products were examined using 1% agarose
gel electrophoresis with TBE buffer.

PCR products were purified on a 1% (w/v) agarose gel
and extracted with a gel-extraction kit (Promega) accord-
ing to the manufacturer’s instructions. Purified PCR
products were cloned into pJET1.2 cloning vector (Ther-
mo Scientific) and transformed into competent Escheri-
chia coli DH5a cells. The transformed clones were
grown in a | ml Luria—Bertani broth (Merck) for 1 h at
37°C with shaking (225 rpm). Various volumes (50, 100
and 200 pl) from the above broth were spread-plated
onto Luria—Bertani agar plates containing ampicillin
(50 pg/ml) and incubated at 37°C for 16 h to obtain indi-
vidual bacterial colonies.

DNA sequencing and phylogenetic analysis

Plasmids were isolated and purified from randomly
selected clones using Plasmid MiniPrep kit (Invitrogen)
following the manufacturer’s instructions. The purified
plasmids were directly sequenced using an automated
sequencer 3130xI Genetic Analyzer (Applied Biosystems,
CA, USA). The partial sequences obtained were trimmed
using DNA Baser software, version 3.0 and vectors were
removed using NCBI on-line program VecScreen (http://
www.ncbi.nlm.nih.gov/tools/vecscreen/). Chimeric sequen-
ces were removed using an online tool DECIPHER'®. Non-
chimeric sequences were submitted to BLAST search
program at NCBI to find the closest neighbour sequences
in GenBank and for phylogenetic analysis. To generate
taxonomic profiles, the assembled sequences were
assigned to taxonomic groups using RDP (Ribosomal Data-
base Project) classifier. Sequences were aligned using
ClustalW sequence alignment program'’® and neighbor-
joining phylogenetic trees’” were constructed using
MEGA 5.2 software’’ with bootstrap values based on
1000 replications®. The sequences were submitted to
GenBank with accession numbers KP303396-KP303589.

Shannon and Simpson diversity indices were calculated
using an on-line program (http://www.changbioscience.
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Relative abundance of bacterial phylogenetic groups in sediments and water samples of shal-

low hydrothermal vent (EVSw, EVBw and EVSd) and non-vent (ESSw, ESBw and ESSd) at Espalamaca.

com/genetics/shannon.html). Rarefaction analysis was
performed by plotting the number of phylotypes against
the total number of clones using EcoSim700 (ref. 23).
Good’s coverage was calculated using the formula
C=[(1 - (n1/N)]*100, where C is the homologous cover-
age, nl the number of phylotypes appearing only once
and N is the total number of clones.

Results

Bacterial diversity from hydrothermal vent region

After chimera removal, we analysed 100 clones from
sediments (EVSd), 29 clones from bottom water (EVBw)
and 24 clones from surface water (EVSw). Highly diverse
bacterial 16S rRNA gene community structures were
found from the shallow hydrothermal vent region in
Espalamaca. The sequences were affiliated with Acido-
bacteria, Bacteroidetes, Chloroflexi, Cyanobacteria,
Deferribacteres, Firmicutes, Gemmatimonadetes, Ignavi-
bacteriae, Planctomycetes, Proteobacteria (includes ¢, y,
& 0, ¢ subdivisions), Spirochaetes and Verrucomicrobia.
Figure 2 summarizes relative proportions of the different
groups in each clone library.

Proteobacteria: This phylum Proteobacteria was found
to be dominant with 59 clones (38 phylotypes) in the
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hydrothermal vent region, which includes ¢, y, & o, ¢
subdivisions. Among them, half of the bacterial clones
were affiliated to jp~Proteobacteria, representing 12.5%,
13.8% and 22.0% of clones in the EVSw, EVBw and
EVSd libraries respectively. The genus Colwellia was
abundant in the sediment samples with seven clones.
Marinobacterium was the only common genus between
EVBw and EVSd libraries; all other phylotypes were
sample-specific.

Eighteen clones (12 phylotypes) were affiliated with a-
Proteobacteria, representing 12.5%, 34.5% and 5.0% of
clones in the EVSw, EVBw and EVSd libraries respec-
tively. Highly diverse oa-Proteobacteria groups were
found in EVBw when compared to the other two libraries
and other subdivisions of Proteobacteria. Eight out of 18
clones belonged to SARI11 clusters. Interestingly, all the
clones were observed only in sea-water libraries and not
in the vent sediments.

Bacterial sequences belong to & & and ¢ subdivisions
of Proteobacteria were also observed in the study area.
Four clones (three phylotypes) were affiliated with
o-Proteobacteria and belonged to the families Syntropho-
bacteraceae (one clone) and Geobacteraceae (three
clones). Four clones (two phylotypes) were affiliated
to &Proteobacteria and grouped into the family Campy-
lobacteraceae. Only one clone each of J&Proteo-
bacteria and &-Proteobacteria was observed in
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EVBw; the remaining clones were solely observed in
EVSd. Four clones (two phylotypes) belonging to the
family Mariprofundaceae of {-Proteobacteria were ob-
served only in the sediment library (EVSd). Figure 3 a
shows detailed phylogenetic position and evolutionary
relationships of clone sequences belonging to Proteobac-
teria.

Bacteroidetes: This was the second dominant phylum
observed in the present study with 39 clones (17 phylo-
types). The clones were closely related to the families
Cryomorphaceae, Flammeovirgaceae, Flavobacteriaceae,
Porphyromonadaceae and one unidentified group. Bacte-
roidetes clones were consistent with all the three libra-
ries, representing 29.2%, 13.8% and 28.0% of clones in
the EVSw, EVBw and EVSd libraries respectively. Four
phylotypes from EVBw and three phylotypes from
EVSw libraries was obtained and none of them was
common. Whereas 15 phylotypes were found in EVSd
library in which one phylotype was observed to be com-
mon with EVSw and four phylotypes were common with
EVBw.

Planctomycetes: Twenty-one clones (11 phylotypes)
belonged to the phylum Planctomycetes and accounted
for 4.2%, 10.3% and 17.0% in the EVSw, EVBw and
EVSd libraries respectively. Majority of the clones
belonged to the family Planctomycetaceae and a few
belonged to the family Candidatus Brocadiaceae. The
sequences closely related with the genus Blastopirellula
were common in all the three libraries. On the other hand,
sequences closely related to the genus Pirellula were
found to be common in the EVSd and EVBw libraries.
The remaining phylotypes were observed only from the
sediments (EVSd).

Cyanobacteria and chloroflexi: A total of 13 clones (five
phylotypes) were affiliated to the phylum Cyanobacteria;
interestingly, they were retrieved only from the sea-water
samples. Cyanobacteria accounted for 33.3% and 17.2%
in the EVSw and EVBw libraries respectively. They were
observed to be predominant (33.3%) in the surface sea
water when compared to Bacteroidetes (29.2%) and Pro-
teobacteria (25.0%). All the five phylotypes observed in
this group belonged to four different families, namely
Bacillariophyta, Cryptomonadaceae, Chlorarachniophy-
ceae and Family II. There were 11 clones belonging to
the phylum Chloroflexi in which six phylotypes were
observed. These accounted for 8.3%, 3.4% and 8.0%
clones in the EVSw, EVBw and EVSd libraries respec-
tively. These six phylotypes represented three different
families, i.e. Anaerolineaceae, Ardenticatenaceae and
Caldilineaceae.

Firmicutes, Verrucomicrobia, Acidobacteria and other
minor groups: Three clones (one phylotype) belonged
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to the phylum Verrucomicrobia and three clones (one
phylotype) were affiliated with the phylum Firmicutes.
Acidobacteria, Deferribacteres, Spirochaetes, Gemmati-
monadetes and Ignavibacteriae were some of the other
phyla observed in this venting region with one clone
each. It is noteworthy to mention here that all of these
minor groups were observed only in the sediment library
(EVSd). Figure 3 b shows phylogenetic position and evo-
lutionary relationships of clone sequences belonging to
phylogenetic groups other than Proteobacteria.

Bacterial diversity from non-vent region

We analysed 128 clones from three clone libraries of the
non-vent samples (81 clones from sediments, 24 clones
from bottom water and 23 clones from surface sea water).
Similar to the venting site, high bacterial diversity was
observed in the non-vent region as well. The sequences
were affiliated to the phyla Acidobacteria, Actino-
bacteria, Bacteroidetes, Candidate Division GNO3, Chlo-
roflexi, Cyanobacteria, Deferribacteres, Deinococcus—
Thermus, Firmicutes, Lentisphaerae, Planctomycetes and
Proteobacteria (includes a, 7, & o subdivisions). Figure 2
summarizes the relative proportions of these groups in
each clone library.

Proteobacteria: This phylum was predominant in the
non-vent region with 68 clones (41 phylotypes), which
includes a, ¥, & O subdivisions. Among them, more than
50% of the bacterial clones (22 phylotypes) were
affiliated with j~Proteobacteria, representing 26.0%,
45.8% and 25.9% in the ESSw, ESBw and ESSd libraries
respectively. Alteromonadaceae, Halomonadaceae, Ocea-
nospirillaceae, Pseudoalteromonadaceae, Hahellaceae,
Colwelliaceae,  Ectothiorhodospiraceae,  Vibrionaceae,
Piscirickettsiaceae, Methylococcaceae and some unidenti-
fied families were observed from the non-vent y~Proteo-
bacteria clones.

Twenty clones (10 phylotypes) were affiliated with o-
Proteobacteria, contributing 47.8%, 16.7% and 6.2%
in the ESSw, ESBw and ESSd libraries respectively. The
predominant phyla observed form the surface sea-water
samples were a-Proteobacteria followed by j-Proteo-
bacteria. Majority of the clones (eight each) belonged to
the family Rhodobacteraceae and SARI11 groups.
Hyphomonadaceae, Methylocystaceae and Rhodo-
spirillaceae were some other families observed in this
region. Similar to the vent region, SARI1 groups were
observed only from the water samples in the non-vent
region.

Eight clones (eight phylotypes) were affiliated with the
subdivision of &-Proteobacteria. Interestingly, all of them
were retrieved from sediment samples contributing 8.6%
clones to the ESSd library. These clones were affiliated
with the families Syntrophobacteraceae, Cystobacterineae,

CURRENT SCIENCE, VOL. 115, NO. 11, 10 DECEMBER 2018
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Table 1.

Bacterial community from the shallow-water hydrothermal vent Espalamaca compared with other shallow-water hydrothermal vent

regions (in percentage)

EVSd, Loihi Photic zone, South Juan de Fuca Bahia
Taxonomic affiliation Espalamaca  Seamount Tonga Arc MV, Milos MV2, Milos Ridge Concepcion
a-Proteobacteria 5.0 - 8.0 - - - 4.0
f-Proteobacteria - - - - - 3.7 -
&Proteobacteria 3.0 60.5 17.0 60.0 59.0 52.4 7.0
7-Proteobacteria 22.0 33.4 33.0 7.0 20.0 17.1 21.0
o-Proteobacteria 2.0 2.1 8.0 5.0 6.0 9.8 10.0
{-Proteobacteria 4.0 - - - - - -
Bacteroidetes 28.0 - 11.0 20.0 6.0 3.7 17.0
Cyanobacteria - - 0.4 2.0 - - 14.0
Planctomycetes 17.0 - 9.0 - 3.0 - -
Chloroflexi 9.0 - 4.9 - - - 10.0
Acidobacteria 1.0 - 3.0 - - - -
Actinobacetria - - 34 - 3.0 - 4.0
Firmicutes 2.0 - 0.7 - - - 10.0
Verrucomicrobia 3.0 - - - - - -
Deferribacteres 1.0 - 0.4 - - - -
Spirochaetes 1.0 - 1.1 - - - 3.0
Ignavibacteriae 1.0 - - 2.0 3.0 - -
Deinococcus—Thermus - - - - - 6.1 -
Gemmatimonadetes 1.0 - - - - - -
Others - 2.1 - - - 7.3 -
Unknown - - 4.0 - - -
Reference Present study 9 33 and Murdock (pers. commun) 24 24 5 32

Desulfobulbaceae, Desulfarculaceae, Desulfobacteraceae
and Campylobacteraceae. Two clones (one phylotype)
belonged to the phylum &-Proteobacteria and both were
observed in the sediment library (ESSd). Figure 4a
shows phylogenetic relationships of clone sequences
belonging to Proteobacteria.

Bacteroidetes: Seventeen clones consisting of 15 phylo-
types belonged to this phylum. Only one clone
represented ESBw while the remaining were found in the
ESSd library, contributing 4.2% and 19.8% respectively.
Majority of the clones were grouped into the family
Flavobacteriaceae followed by Marinilabiliaceae, Cryo-
morphaceae, Saprospiraceae, Sphingobacteriaceae, Rho-
dothermaceae and Flammeovirgaceae.

Actinobacteria: A total of 12 clones (six phylotypes)
were affiliated to this phylum, accounting for 8.7%,
20.8% and 6.2% clones in the ESSw, ESBw and ESSd
libraries respectively. Five clones represented the family
Acidimicrobineae, four clones represented the family
Actinomycetales and one clone each was affiliated to
lamiaceae and Euzebyales. Actinobacteria was found to
be the second dominant phylum in the ESBw library.
Interestingly, Actinobacteria groups were not recovered
from the venting region of Espalamaca.

Planctomycetes, Chloroflexi and Cyanobacteria: Ten
clones (six phylotypes) were affiliated with Plancto-
mycetes, and accounted for 4.3%, 8.3% and 8.6% in the
ESSw, ESBw and ESSd libraries respectively. These

2116

clones were closely affiliated to the families Plancto-
mycetaceae,  Phycisphaeraceae = and  ‘Candidatus
Brocadiaceae’. A total of five clones (four phylotypes)
belonged to the phylum Chloroflexi, representing 4.3%
and 4.9% of the in the ESSw and ESSd libraries respec-
tively. Two clones each were affiliated with the family
Leptolinea and the remaining one was unidentified. Four
clones (three phylotypes) belonged to the phylum Cyano-
bacteria, representing 8.7% and 2.5% in the ESSw and
ESSd libraries respectively.

Acidobacteria, Firmicutes and other minor groups: A
total of five clones (three phylotypes) were affiliated to
Acidobacteria. Acidobacterial clones were only recovered
from the ESSd library and belonged to the groups Gp4,
Gp21 and Gp22. Both the clones originated from the
ESSd library. Two clones (two phylotypes) were affi-
liated to Deinococcus—Thermus, two clones (one phylo-
type) to Deferribacteres and one clone each belonged to
the phyla Lentisphaerae, Firmicutes and Candidate Divi-
sion GNO3. Figure 4 b shows evolutionary relationships
of phylotypes from clone sequences.

Discussion

In Faial Island, a low-temperature Espalamaca hydro-
thermal field has been discovered in the Faial-Pico
channel off the Espalamaca headland (Faial Island,
Azores, NE Atlantic). The main venting area, named
Espalamaca vent field, extends for a few tens of metres at
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approximately 35 m depth. Gas emissions can be obser-
ved venting out of the sediment, as well as through
cracked hard ground. Preliminary analyses of the gaseous
discharges from the vents suggest that they are mainly
composed of CO,, with low concentrations of methane,
temperature as high as 35°C and pH of 5.7 (Ana Colaco,
pers. commun.). CO, is the primary gas found in most of
the shallow-water hydrothermal vents described previous-
ly***. This hydrothermal field is also integrated into a
larger protected area designated Baixa do Sul (Canal
Faial-Pico), recently classified and included under the
Faial Island Natural Park.

Studies on microbial communities inhabiting the deep-
sea hydrothermal venting regions of Atlantic Ocean have
been made along the Lost Cityzs, Rainbow?®, Ashadze?,
Logatchev®® and Lucky Strike vent fields*”. However,
microbial explorations from the shallow hydrothermal
vent counterparts are still poorly explored in the Atlantic
Ocean. The present study provides novel insight into the
bacterial communities thriving in the shallow-water
hydrothermal vent of Espalamaca, and how they vary
from other shallow hydrothermal vent fields.

Genomic information of unculturable microbes from
metagenomic clone libraries can help in understanding
their physiology and role in the ecosystem®®. Most of the
16S rRNA gene sequences obtained from the clone libraries
were closely related with the uncultured neighbours in the
GenBank database. At the same time, we identified the
sequences through RDP database to reveal closely related
organisms. The on-line tool DECIPHER helped to find
out around nine chimeric sequences from the clone libra-
ries which were omitted from further analysis.

Bacterial community structure obtained from the Espa-
lamaca hydrothermal vent sediments was compared with
other shallow-water hydrothermal vent regions (rich in
CO, emission) reported from various oceans to find out
the similarities and variations between them (Table 1).
Some shallow-water hydrothermal vents like Taketomi
Island’' and Punta Mita’* were not included in this com-
parison since they reported high concentration of me-
thane. However, we have included microbial community
studies from South Tonca Arc®® and Juan de Fuca Ridge’,
where there were no reports of high gas concentration.
The comparative study revealed that the phylum Proteo-
bacteria (especially &, - and &-Proteobacteria) was con-
sistently present in every hydrothermal vent field. It is
not surprising because this phylum is the most dominant
and diverse group of the microbial assemblage®. How-
ever, Proteobacteria subdivisions and their proportions
varied from one region to another. Bacteroidetes was
observed in almost all the venting regions, except Loihi
Seamount (Table 1).

Generally, &-Proteobacteria groups predominant in the
shallow hydrothermal vents of Loihi Seamount’, Milos
Island** and Juan de Fuca Ridge’. It is noteworthy to
mention that the &Proteobacteria group has also been
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reported to represent a major part of microbial communi-
ties in deep-sea hydrothermal vents as well®*>. Results
from previous studies revealed that e&-Proteobacteria
accounted for a significant part of the domain bacteria,
between 40% and 80% from the 16S rRNA clone libra-
ries. However, microbial communities in the present
study region revealed that the composition of &
Proteobacteria was only 3% in total, which is a contrast
to other hydrothermal vents. It is worth mentioning here
that the &-Proteobacteria clone sequences were affiliated
to the order Campylobacteriales, which is generally
mesophilic and microaerophilic in nature®. Further, one
of the phylotypes (clones EVBw-F45 and EVSd-A78)
belonging to the phylum e&-Proteobacteria was closely
related with the GenBank sequence HE576785; interes-
tingly, it was reported from a microbial mat in Lucky
Strike hydrothermal vent field (Mid-Atlantic Ridge). In
addition, clones EVBw-F45 and EVSd-A78 were closely
related with the genus Arcobacter in RDP database,
which is reported to be the producer of elemental sulphur
in filamentous form from the oxidation of sulphide®’.
This reveals that even though mesophilic &-Proteobacteria
groups are present in low level in the study area, they are
involved in sulphur oxidation process.

y-Proteobacteria groups were predominant in the
shallow hydrothermal vent of Espalamaca, similar to
those in the South Tonga Arc™ and Bahia Concepcion’
in the Pacific Ocean. a-Proteobacteria and p-Proteo-
bacteria are known to form large clusters in all the marine
environments®*~’. Bacteroidetes and y-Proteobacteria
together contributed 50% in the present study area fol-
lowed by South Tonga Arc with 44% and Bahia Concep-
cion with 38%. Other bacterial groups observed in this
study also followed a similar pattern to the South Tonga
Arc vents. For instance, domination of Bacteroidetes and
y-Proteobacteria followed by other Proteobacteria groups,
Planctomycetes, Chloroflexi and even minor group
signatures like Acidobacteria, Verrucomicrobia and
Deferribacteres. On the other hand, large variations in
bacterial communities were observed between the present
study region and other shallow hydrothermal vent fields
(Table 1). The present study revealed more than 15 phy-
logenetic groups, whereas in other venting regions it was
reported to be less (Table 1).

In Milos and Juan de Fuca Ridge, the number of phy-
logenetic groups was around seven and in Loihi
Seamount, it was reported to be three, excluding few
unknown groups. This may be due to lower number of
sequenced clones. Whereas in South Tonga Arc vents, a
larger number of clones have been sequenced; hence the
number of phylogenetic groups was more than 10. Even
though clones sequenced from EVSd library (n = 100)
were less than the photic zone vent of South Tonga Arc,
we have identified more phylogenetic groups. Apart from
these clone libraries (compared in Table 1), recently
advanced technologies like Illumina sequencing are a
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Figure 5.

JX016638 Uncultured bacterium clone HglFeb0057m2

EU259786 Uncultured bacterium clone D3840
FJ752879 Uncultured Planctomycetes clone NdGal132

Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences showing the relationship of

SARI11 phylotypes from Espalamaca waters. Bootstrap analysis was performed with 1000 replications and values

above 50% are indicated at the nodes.

promising approach for studying microbial community
structure. For instance, Lentini e al.” analysed prokaryo-
tic communities from a shallow hydrothermal site in Eo-
lian Islands, Italy, using Illumina sequencing technology,
which resulted in about 35 phylogenetic groups.

Bacteria of the SAR11 groups often dominate marine
microbial communities in both the surface and deep
waters of the ocean and potentially mediate a large por-
tion of the dissolved organic matter flux*’. Though they
are not in large proportion, we have observed a
considerable number of SAR11 clones from the Espala-
maca waters (seven clones from venting regions and eight
from the non-venting region), accounting for 8.3%,
17.2%, 21.7% and 12.5% from the EVSw, EVBw, ESSw
and ESBw libraries respectively. Figure 5 shows phylo-
genetic positions of each clone belonging to SARII1
groups obtained from this study. Clones belonging to
SARI11 clade were not observed in sediments of both vent
and non-vent regions.

The presence of Cyanobacteria and Chloroflexi groups
confirms that these photosynthetic bacteria are involved
in primary production in the shallow-water hydrothermal
vents. Few of the clones (EVSd-B10, EVSd-B55, EVSd-
B89 and EVSd-B92) belonging to Chloroflexi were
closely related (96%, 91%, 91% and 97% sequence
homology respectively) with a sequence in NCBI data-
base reported from iron-oxide sediments in Volcano 1,
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Tonga Arc hydrothermal vent (GenBank accession num-
ber FJ905709).

A considerable number of clones (n=21) was ob-
served from the vent libraries belonging to the phylum
Planctomycetes. They were affiliated with two orders,
namely Planctomycetales and Candidatus Brocadiales,
and closely related with the genera Pirellula, Blasto-
pirellula, Rhodopirellula and ‘Candidatus Anammoxo-
globus’. Interestingly, these groups are reported from the
studies conducted by Storesund and @vreds*' on the
diversity of Planctomycetes in low-temperature hydro-
thermal venting (iron-hydroxide deposits) at the Mohns
Ridge, a part of the Arctic Mid Ocean Ridge. Members of
Planctomycetes are reported to be involved in carbohy-
drate fermentation and sulphur reduction*”. In addition,
they are the only known organisms able to perform
anaerobic ammonium oxidation (anammox), which could
be a significant process in these ecosystems*>**,

Members of Actinobacteria appear as a small fraction
in the hydrothermal vents when compared to non-thermal
environments®’. In this study, we did not observe Actino-
bacteria members in the venting region, while Actinobac-
teria was found to be the second dominant phylum in the
ESBw library of the non-vent region.

Shannon diversity index (H') for the venting region
was found to be 2.28, 3.06 and 4.03 in the EVSw, EVBw
and EVSd libraries respectively, whereas in the non-vent
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region it was 2.40, 2.57 and 4.16 in the ESSw, ESBw and
ESSd libraries respectively. Rarefaction curve analysis of
vent and non-vent sediment libraries indicated that the
non-vent region showed more phylotypes with fewer
clones than the venting site (Figure 6). Overall, a total of
84 phylotypes each were obtained from both the sites and
majority of them (84.5%) were unique to the ecosystem.
Only a few phylotypes (15.5% of total) were observed to
be common between the vent and non-vent libraries. This
massive community variation (within 500 m distance) in
clone libraries showed that microbes inhabiting the vent-
ing area are entirely different from the reference area
which may be involved in metal or elemental transforma-
tion and oxidation pathways.

Culture-dependent analysis from the shallow hydro-
thermal vent of Espalamaca'® revealed that the presence
of j-Proteobacteria (68.7%), a-Proteobacteria with
(16.7%), Bacteroidetes (10%), Firmicutes (3.2%), Actino-
bacteria (0.9%) and p-Proteobacteria (0.45%). Former
four phylogenetic groups were also obtained in culture-
independent clone library analysis, whereas minor groups
like Actinobacteria and S-Proteobacteria were not obser-
ved in vent clone libraries. However, many uncultured
clones recovered from the same venting regions were
affiliated to more than 10 phyla. Phylogenetic groups
of Proteobacteria (& &, ¢ subdivisions), Acidobacteria,
Chloroflexi, Cyanobacteria, Deferribacteres, Gemma-
timonadetes, Ignavibacteriae, Planctomycetes, Spirochaetes
and Verrucomicrobia obtained from non-culturable diver-
sity were not detected in culture-dependent analysis. This
indicated the importance of culture-independent sequence
analysis for assessing the entire bacterial community in a
particular ecosystem. Roseovarius, Photobacterium,
Vibrio and Pseudoalteromonas are some of the common
genera observed in both culture-dependent and culture-
independent analysis. The present study analyses culture-
independent microbial communities in the shallow hydro-
thermal vent area of the Azores Islands.

70 A

50
40 -
30 -

20 A ——ESSd

—+—EVSd

Number of phylotypes obtained

0 T T T T :
0 20 40 60 80 100

Number of clones

Figure 6. Rarefaction curve of 16S rRNA gene libraries from vent
(EVSd) and non-vent (ESSd) sediments.
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We explored the presence of functional genes from the
sediment DNA sample using available primer sets (data
not shown). Interestingly, we could see PCR amplifica-
tion bands for the genes of methanol dehydrogenase
(mxaF), carbonic anhydrase and soxB. Carbonic
anhydrases is a metalloenzyme catalysing the reversible
hydration of carbon dioxide to bicarbonate, and plays
important roles in global carbon cycle®. Methanol
dehydrogenase is highly conserved among distantly related
methylotrophic species in ¢, £ and y-Proteobacteria®’.
The presence of soxB gene shows that there are active
sulphur-oxidizing microbial communities in shallow
hydrothermal vent. This additional information revealed
the importance of shallow hydrothermal vent bacteria
which are involved in global biogeochemical cycles.

Conclusion

The Espalamaca hydrothermal vent region harboured
distinct bacterial communities when compared with a
non-venting region located 500 m south of the vent site.
Merely 15.5% of the phylotypes were observed to be
common between the vent and non-vent libraries. Combi-
nation of culture-independent clone libraries and culture-
dependent diversity analysis provided an overview of
microbial communities in the shallow hydrothermal vent
in Espalamaca. Groups of &Proteobacetria were reported
to be dominant in various hydrothermal vent systems.
However, the present study area exposed to a high abun-
dance of y~Proteobacetria and Bacteroidetes groups, simi-
lar to the hydrothermal vent of South Tonga Arc and
Bahia Concepcion in the Pacific Ocean. The presence of
methanol dehydrogenase, carbonic anhydrase and sulphur-
oxidizing genes in the study area favour further studies
on functional gene diversity aspect which could reveal
microbial metabolic pathways in the venting area. This
forms first report on culture independent microbial diver-
sity from shallow hydrothermal vents in Azores Island.
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