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A new method is proposed in which constructing exact solutions to nonlinear evolution
equations is based on successive applying the perturbation method and apparatus of the
continued fractions. It is shown that exact solitary-wave solutions arise in the limiting case
as the sum of geometric series of the perturbation method based on the linearized problem. It
is demonstrated that the continued fraction corresponding to the perturbation series, terminates
to a convergent giving an expression for the desired exact soliton-like solution. The order of
the convergent is established to be not less than twice the pole order of the original equation’s
solution. The effectiveness of the method is demonstrated on the solution of integrable 5th
order equation of the Korteweg—de Vries family, 3rd order equation with 5 arbitrary constants,
the Calogero—Degasperis—Fokas equation and the non-integrable Kuramoto—Sivashinsky equa-
tion. The analysis showed that in the case of integrable equations the continued fraction
corresponding to the perturbation series terminates unconditionally, that is, the series is geometric
or becomes so after regrouping the terms. For non-integrable equations the requirement of
termination of the continued fraction that is equivalent to the geometricity of the perturbation
series leads to the conditions on the original equation coefficients, which are necessary for the
existence of exact soliton-like solutions. The advantages of the method, which can be easily
implemented using any of the computer mathematics systems, include the ability to work with
equations, the solution of which has a pole of zero, fractional or higher natural order.

Keywords: Continued fractions, perturbation method, exact solutions, nonlinear evolution
equations.

DOI: 10.18500/0869-6632-2016-24-4-71-85
Paper reference: Zemlyanukhin A.l., Bochkarev A.V. Continued fractions, the perturbation

method and exact solutions to nonlinear evolution equations // Izvestiya VUZ. Applied
Nonlinear Dynamics, 2016. Vol. 24. N4. P. 71-85.

©A.U. 3emnanyxun, A.B. bBoukapés
W3B. By30B «I[TH», T. 24, Ne 4, 2016 71



Introduction

Forty-five years ago R. Hirota published a paper [1] presenting a direct bilinear
method to construct N-soliton solutions and Backlund transformations for integrable equa-
tions. The basic idea was to replace the dependent variable to bring the original equation to
bilinear form, for which a perturbation series is terminated at soliton solutions.
The solutions in this case are represented by Pade approximants [2] of a special kind.
Hirota noted that the use of Pade summation technique to the perturbation series for
the original equation is possible, but not advisable because of too slow convergence
or even divergence of such a series [1]. Furthermore,it is known [3] that the soliton,
as a fundamentally nonlinear formation cannot be obtained in any finite order of the
perturbation method based on the solution to the linearized problem.

The aim of this article is to expand understanding of the possibilities of direct
perturbation method for integrable and nonintegrable equations and to offer effective
techniques to build their exact soliton-like solutions. For summation of the perturbation
series we will apply the techniques of continuous fractions [4], which is closely connected
with Pade approximants, but historically arisen much earlier. In the framework of this
approach the special properties of the series [5] that allow to find exact solutions to
nonlinear evolution equations will be identified.

Following [1], we first consider the Korteweg — de Vries (KdV) equation

ur + 6utly + Ugppr = 0. (D)

For the KdV equation (1), we seek a solution asymptotically vanishing at infinity. Let us
denote u = w,, integrate the equation (1) for z and choose the constant of integration
equal to zero:

wy + 3w + Wy = 0. )
Substituting the expansion
o
w = anwn(w,t) 3)
n=t

into equation (2), collect terms with the same degrees of €. We obtain the infinite system
of equations for determining the functions w;,(x, t):

gl w1t + W1 gzx = 0,

g2 Wot + W2 prx = —3UJ%$,

g3 W3t + W3 zzxx = —6w1woq, 4)
et Wyt + W prx = —bw1 w3, — 3w§;p7

The first equation of (4) has a particular solution w; = exp(kz — wt) under the con-
dition = k3, which is the dispersion relation of the linearized problem. Each of the
subsequent equations of the system (4) has a solution of the form w,, =K, (exp(kz—wt))",
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where n is the number of the equation and K, is a constant. Sequentially calculating the
constants Ko, K3, ... and denoting

z = cexp(kz — ot), Q)
the expression (3) can be written in the form of the power series
2 28 2 20 28
=2——4—— ==t — =+ ... 6
UEET T TR Tk 32 ©

It is seen that the series (6) is geometric with the first term z and common factor —z/(2k).
Under condition |z/(2k)| < 1 the series (6) converges and has the sum

2z eexp(ka — k)

1+ 4z 14 gpexp(kr — k3t)

w

(M

The last expression is an exact solution to (2) for all values of the constants € and k.
Differentiating (7) by z, we obtain one-soliton solution of the KdV equation (1):

4k3e exp(kx — K3t)
5.
[Qk‘ + eexp(kx — k73t)]

u =

Note that introducing the notation F' = 1+ exp [kz — k3t + In(e/(2k))], the solution (7)
can be represented in the form w = 2(InF'),. Then u = w, = 2(InF"),,, which coincides
with the Hirota formula for the N-soliton solution or transformation that converts the KdV
equation to the bilinear form.

At this stage, most important that solitary-wave solution (7) occurs not in some
finite order of the perturbation method, but arises in the limit as the exact sum of the
geometric series (6).

The property of geometricity of the perturbation series was used previously in [6,7]
to construct the so-called padeons, in [8] to suggest the formal linearization method.
However, the study of the universality of this property for integrable equations and the
possibility of its effective use in non-integrable cases has not previously been conducted.

The structure of the perturbation series for the majority of integrable equations
is much more complicated than for the KdV equation. In such cases to identify the
geometricity of the series it is convenient to use the apparatus of continued fractions.

1. Continued fractions and power series

Any power series with nonzero coefficients a,,
[e.e]
z+ Z anz" (8)
n=2

can be put into correspondence with continued fraction [9]

z

9
bor )
1+ .
z
14—

bz
14+ 2

14 ...
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whose coefficients b,, are calculated by the formulas

by = —ay,

2

CLZ - CL3
b3 = s

a2

asyg — a%
by = 204705 (10)

az(a; — as)

(a3a5 — 2azazaq + a3 — agas + a3)

be —
° (a3 — a3)(agay — a3)

9

The first n levels of the fraction (9) form its n-th convergent P, /Q,:

P B

Q7

P2 z

Q2 T 1+ bz

Pg z zZ+ 5322

@_ 14 boz a 1—|—(bg+bg)2’ (11)
1+ ng

Py Z z+ (bs + b4)z2

@: ” boz B 1+ (by + bg + bg)z + (boby)z?
14 ng

1+ b42

Expressions (10) can be obtained by equating the convergents P, /@, to corresponding
partial sums of the series (8).

The convergents (11) of the series (8) form a stepped sequence of Pade approxi-
mants [A/B] of this series [10]

n/n
P 5/ 3| " even,

Qn

n+1/n-—1
2 / 2

], n — odd.

Continued fraction (9) is truncated and becomes its N-th convergent, if for any
n> N,
P n+1 P n

Qn—i—l B @

The difference between two consecutive convergents satisfies the condition [11]

Pn+1 Pn _ (—1)"z"+1b2b3 St bn+1
Qn+1 Qn B Qn—i—lQn '

(12)
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The equation (12) gives a sufficient condition for continued fraction to be truncated:
for any n > N equality
Bp,=bobs- ... - b1 =0 (13)

1S true.

Truncation of the continued fraction corresponding to power series means that the
series is geometric perhaps after rearrangement of its terms. In the examples considered
below the power series is a perturbation series of the evolution equation to be solved.
The establishment of geometricity of the series is equivalent to finding the exact solitary-
wave solution.

2. Equation of the KDV family
Consider the 5th order KdV-type evolution equation [12]
Ut + Upzper + 10UULee + 20U Upy + 3Ou2ux =0. (14)

In accordance with the direct perturbation method the solution to (14) can be found
in the form of a functional series in powers of a parameter ¢:

U= anun(x,t). (15)
n=1

Substituting (15) into (14) and collecting the terms with identical power of ¢, e get
the system

€51 U+ Ulgzgzr = 0,

e Uzt + U2gzgze = —10UIUILze — 20Ut U L,

53 LoU3st + U3prrrr = _10(u1u2xxx + u2u1:c:c:c) - 2O(u1xu2x):c_
—30u%ulm, (16)

54 D U4t T Udggrar = _10(u1u3xmv + UgU2zzr + u3u1xmv)_

—30u; (uiugy + 2uguiy),

The first equation of (16) has a solution u; = exp(kx — wt) under the condition
o=k (17)

Finding the solutions to the following equations of (16) in the form w,, =K, (exp(kz—wt))",
define constants K. Introducing the notation (5), expression (15) can be given the form
of a power series

22 323 124 5 2° 3 20 7 27 1 28

YT R T IR T2 T T6k  16k0 ' 6Ak2  16k0 T

(18)
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Now we construct the continued fraction corresponding to the series (18).
By calculating the values b, using formulas (10), we write expressions for sequence
of B, (13):

Lo,
ROkt 16k6°

Starting with n = 4, all values of B, turn to zero, therefore, continued fraction
corresponding to the series (18) terminates and degenerates into 4th convergent (Pade
approximant [2/2])

By = B3 = By=0, Bs=0,

LY P . . (19)
Q4 " boz (2k2 + 2)?
b3Z
+ 1+ byz

Represent the fraction (19) as the sum of geometric series

Py P > z 22
@:1_<_z z2>zz<k24k4>' (20)

reintr= B

By grouping the terms of the last expression in powers of z, we will receive
the series (18). In other words, the use of continued fraction allows to rearrange the
perturbation series for equation (14) to geometric one (20) in such a way that the sum
of the series coincides with the corresponding convergent and is an exact solution to the
original equation. In fact after the substitutions (5) and (17) the fraction (19) takes the

form
4k*e exp(kx — k5t)

2
[21@2 + eexp(kx — k°t)

and becomes the exact solution to the equation (14).

Note that there is a relationship between the pole order of integrable equation’s
solution and the order of convergent, which truncates the continued fraction for the
perturbation series. In this case, equation (14), as well as any equation of the KdV
hierarchy, has a solution with a pole of second order (p = 2). From (19) it is seen
that corresponding convergent has the order of 2p, that is, the Pade approximants stop to
change starting with order [p/p).

3. Integrable equation of the 3rd order

Equation
3 (Q+ul);

where Q = co + cu + cou® + csu® + cyut is an arbitrary polynomial, is the second

canonical form of the equation K¢ from the encyclopedia of integrable systems [13].
Find the solution to equation (21) in the manner described in section 3. After

multiplying (21) term by term by u, (Q + u2), we substitute (15) in (21) and group

1
Ut = Uggax — + 5 Q//um (21
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the obtained expression in powers of €. Assuming ¢y # 0, we arrive at a system of
equations

el: 0=0,
2 3 2
€1 coun | g€~ Coc2 | Uiz — Coltaan = 0,
3 3 c
53%WH‘gﬁ—%@UM—WMM—§8%%—%@+E;WWN
361
_7ulxulxx7
4 3 3 c
¥ coust + gcl — CpC2 | U3y — COU3pzr = g 8cocg — 4cico + a (U1UQ)I—
3c1 3 c? 3c2 3
-ugmedx UM%m_§2@_EaUWMWm+§a%ﬁ‘
+80 (16¢3cq — 6c3cies — 4cked + Begcdey — cf)uiuy,
0
(22)
The equation at order €2 has the particular solution u; = exp(kx — wt), under condition
3 3¢
Sequentially solving the following equations (22), for series (15) we have
u=2z— i{é%cgc?, — 4y (K% + e)eo + c‘i’] +
16k2c3
2 2 6 4 2, 212
+ M[MB% — 4dcgk?) + 64(k° + 2c0k™ — 3c1e3k® + c5k°— (24)

— 3crcacs)cy + 163 (kY + 4eok® + 3cics + 3¢3)cA—
— 4t (5k* + 6¢2)co + 30?] -
where 2 is defined by equality (5). Computing the coefficients b,, of the continued fraction
for the series (24) by formulas (10), we obtain that members of the sequence B, Ba, ...
(13) turn to zero starting with n = 4. Consequently, the continued fraction terminates,

the series (24) is geometric and its sum coincides with the 4th order convergent (Pade
approximant [2/2]):

= [2/2] = 1024} k"2 /| 1024ci k2 +
+ 64c3k?(8c3cs — der (k2 + ca)co + ¢3) 2+
+ (64(4cgk? + c2)ch — 64(KS + 2cok? + cre3k® + Bk? + cicacs)cp+

Py

Q4

(25)
+ 16¢3(3k* + 4cak? + c1c3 + c3)c3 — 4ct(3Kk% + 2¢9)co + §)22) |.

Taking into account (23) and (5), fraction (25) gives the exact solution to the

equation (21).
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4. Generalized Calogero-Degasperis-Fokas (CDF) equation

The CDF equation containing two arbitrary coefficients a and 3

1 3Ug Uy 3u 3 p 2
is integrable [14]. Above we have obtained the exact solitary-wave solutions to integra-
ble equations: KdV-type (14) and K4 (21). A perturbation series for each of them were
definitely geometric, moreover in the case of the equation (21) geometricity of the series
observed at arbitrary values of the coefficients cy, ..., c4.

The change in numerical multipliers of the equation may lead to its non-integrability.
Consider a generalization of the CDF equation, in which one of the numeric multipliers is
replaced by an arbitrary coefficient v:

Upllpy 3ud 3 [32
ut+yuzm—z " +8u2—|—8um au+a =0. 27

Obviously, an arbitrary constant is a solution to the equation (27). Denoting this constant
as F, we seek solitary-wave solution to this equation in the neighborhood of F in the
form of sum

o
u=FE+ Z e"up(x,t). (28)
n=1
After multiplying (27) term by term by u?, we substitute (28) in (27) and group the
obtained expression in powers of ¢:

2

51 U T YUizex o5 SE? <E20ﬂ + B) Uy =
) (E4 2 [32>

52 LoUgt T YU%zax T =5 8E2 <E20L + B) Uy = ulmulxx - Tululm
2

53 DUzt + YUszrxr T o5 SE? <E20L + B) U3y = ulxu2x)m

<E4 2 [32> 5 5 3(E4(12 +3[32)
—— s (w2)s — @ui’x ~ Wt — Yol Uiy,
(29)

The first equation of (29) has the particular solution u; = exp(kx — wt) under condition

0= FE%(3E%a? 4 6ap + 8yk?) + 3p }

s
Sequentially solving the following equations (29), after the introduction of the notation
(5) for the series of (28) we get

52
4.2 2.2 _ 02
Ze—: Up(x,t) = 8E3yk2<Ea — E°k —[3>+

23

T 256 Bk

(3E8(X4 _ E6a2]{72(4'y+ 9) + 6E4]{74(1 _ 2Y)_ (30)

6ELa2p2 + 3E2R22(3 — dy) + 3[34) -
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Identifying the perturbation series (30) with the series (8), we calculate the coefficients
by, of the corresponding continued fraction by formulas (10) and write the expressions for
the sequence of B, (13):

E40L2 _ E2k2 _ [32

B =
! SEBYKZ
1
By = 7<E8 44 FSa2k2(dy + 1) + 2E4 K4 (6y — 1)—
2 256E6'Y2k74 a” + o ( Y+ )+ (GY )

_ 2FYa2B? 1 E2P2K2(12y — 1) + [34>,

Other expressions are too bulky to be presented. All members of the sequence B,,
beginning with B, , contain two common multipliers:

(4y — 1) <3E4oc2 16E2yk? — 3E2K2 + 16p%y — 352>.

Thus, the continued fraction is terminated in two cases:

_1 31
Y_Z (€29)

3 1 E*a?
=16 B2 _p2)

The first case corresponds to the original integrable CDF equation (26). The series (30) is
geometric and its sum equals to the 4th order convergent

Py
Q4

or

= [2/2] = 16k'ES> /<[(E2a — B2+ E?k?)] [(Eza +B)2 + E2k2] 224
(32)
+ 8E3K%(E*a® — E%k? — B?)2 + 16E6/<;4>.

The second case establishes a definite relationship between the coefficients of the original
equation and the parameters of sought solution for which the sum of the series (30) is
defined as

~1 = [2/2] = 36k*ESz {(EW + B?)(E?k* + 4p%) 22
Q4 (33)
— 243k (E?k? + B%)z + 36E6k4} .

To determine the exact solution to the equation (27) it is necessary to replace z in the
above fractions Py/Q4 by the expression (5), in which we do accept

y 3E2 %+ 6aB + 2k* + i
o= o” + 6ap + 2
in the case of (32) and
3k

2p*
_ 2 2212 2n2 2 4 2 2
w——16(E2k2+62)[E (B202k? + 2027 + 40BK? + k') + B <4a[3—|—3k7>+—E2]
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in the case of (33). In both cases, in accordance with (28) the exact solution has the form
ofu=F+ P4/Q4.
Note that the solution (32) at o # 0 has the pole of the Ist order. At o = 0 there is
a full square in the denominator of (32)
Py 16k*ES2

Q- 4B — (B*R + B2)2 i

and the solution has a pole of the second order. This conclusion is consistent with
the results of the pole order determination for solutions to the equation (27) using the
dominant terms analysis [15]. In fact, this equation written in a variable of a traveling wave
& = kx — ot under the condition (31) takes the form

2 UEUgs Eg 1 9 9 8w  kp?
EUEEE_z " +u2 +E<ka U +2/<JOL[3—?+ W)ug_(), (34)

Replacing u in (34) by a power function pE~? with constants p and ¢, for the left part (34)
we get

Ep?(q* — 47773 — 302kple 397! 4 2p% (4w — 30fk)ETITL — 3B%KETL. (35)

The first two terms of (35) have the minimum values of degree, they are dominant.
Equating their degrees in accordance with the Kruskal’s compensation principle [16], we
find ¢ = 1, that is, the solution has a pole of the 1st order.

When a = 0 the expression (35) simplifies to

KpP(q? — 987175 + 8pPog 1L — 3p2kEr .

The first term is the only dominant. Equating to zero the coefficient in front of him gives
q = 2, therefore, the decision in this case has a pole of the 2nd order.

Thus, between the pole order ¢ of solution to the equation and the order r of the
convergent P, /@, giving the solution of this equation, there is a link:

r>2q (36)

5. Kuramoto-Sivashinsky (KS) equation

Finding the solution to the non-integrable KS equation [17]
Ut + Uy + Ugy + OUggy + Bummmm =0 (37)

in the form of (15), after grouping by powers of ¢ we have the following system of
equations

€51 U+ Ulgr + QWUigzr + Bulxxxx =0,

2. _

€% Uz + Ugpy + QUzzx + Bu2xxxx = —UilUig,
3. _

€1 U3t + U3gy + OU3gee + Bu3xxxx = _(u1u2)xa (38)
4 . _

€T L Uy + Uggy + OUgpgae + Bu4xmvx = _(u1u3)x — UU2g,
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The first equation of the system (38) has a particular solution u; = exp(kx — wt) under
the condition

o = Bkt + ak® + k2. (39)
Sequentially solving the following equations (38), after the introduction of the notation
(5) for a series (15) we get

52

 2k(7BkZ + 30k + 1)
3

u ==z

z
" SE2(13BR2 + 4ok 1 1)(TBR2 + Bak + 1)
(27Bk? + 10ak + 3)2*

24k3(21Bk2 + 5ak + 1)(13pk% + 4ak + 1)(7Bk? + 30k + 1)?
The analysis of dominant terms of (37) shows that the expression (40) corresponds to a
function with a pole of the 3rd order. According to the inequality (36), the exact solution
of equation (37) is a convergent of the order not lower than Ps/Qg or diagonal Pade
approximant at least [3/3] order. The above noted that the corresponding expressions are
too bulky and difficult to operate even with the use of modern systems of symbolic
mathematics. To simplify the calculation one can use appropriate transformation of the
perturbation series (40). Let’s use the fact that the cube root of the power series (40)
corresponds to a function with a pole of the 1st order. To extract the cube root of (40),
consider the equation u = z~2v?, where

(40)

+ ..

o
v=2+ Y 2", (41)
n=2

and equate coefficients on both sides of this equation with equal powers of z. Solving the
resulting equalities with respect to ¢,,, we find

22

T k(T + 3ak + 1)
(8Bk? + bak + 2)z3
36K2(13BA2 + dak + 1)(7BK2 1 3ok 1 1)2
(210B2K* + 170ak® + 5002k2 + 49Bk2 + 360tk + 7)="
~ 324k3(21pAZ 1 5ok 1 1)(13pK2 + dak + 1)(7PA2 + 3k + 17

As before, calculate the coefficients of the continued fraction corresponding to the series
(42) by formulas (10) and write expressions for the sequence of B,, (13):

vV==z

+

(42)

1
B =
' 6k(TBkZ + 30k + 1)’
b — 5Bk2 + ak + 1
> 36k2(13Bk2 + 4ok + 1)(7Tpk2 + 30k + 1)’
By = ! (43)

G483 (21Pk2 + bk + 1) (13k2 + dak + 1)2(7Pk2 + 3ok + 1)5
X <1428[33k:6 + 100ap?k® — 11502Bk* + 25033 — 5142k —
— 312aBk3 + 13022 — 68Bk2 + 8ak + 2),
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In accordance with (36) the first fraction of the sequence of convergents (11) which can
match the solution with the Ist order pole is P»/Q2 (Pade approximant [1/1]). In order
to continued fraction corresponding the series (42) terminates and coincide with P»/Qo,
it is necessary that all the values (43) starting from Bs go to zero. From the condition
By = 0 we find

_ B5Bk2—1 24
= (44)
Substituting (44) into (43), we have
B — 1
T O12k(1IBR2 — 1)
BZ = 07
k*—1

B3 = b

5184Kk3(23pk% — 2)(11Pk2 — 1)’

As it is seen, only one condition (44) is not enough. Demanding B3 = 0, obtain the
second condition

1
B=1s- (43)

Pair of conditions (44), (45) is enough to the continued fraction terminates and matches
up with a convergent P5/Q)2, which in this case takes the form

P 120zk
v=—=[1/1]=———.
Qo z + 120k
Substituting the expression obtained for v in (41), we find u as follows
O 120°K%2 46
(2 + 120k)3 (46)

Replacing z in (46) by expression (5) and taking into account the dispersion relation (39)
and the conditions (44), (45) for the coefficients of the equation KS, we get the exact

solution
1203k3¢ exp(kx — 6k2t)

3
[a exp(kz — 6k2t) + 120/<;]

The solution (47) can be obtained in the other way. For example, the replacement of
the dependent variable u = w? transforms (37) to equation, the solution of which has the
pole of the 1st order. Substitution © = w,, in (37) allows to decrease the order of solution
pole by one. In both cases the application of the proposed method to the transformed
equations enabled us to obtain the solution (47), but with increased computational costs.

6. Scheme of the method. Advantages and disadvantages

The examples above allow us to represent a general scheme of the method of finding
the exact solitary-wave solutions to evolution equations.

Step 1. Preparation of the perturbation series in the form of a power series based on
the solution of the linearized problem.
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Step 2. Calculation of sequence B,, of products of the coefficients of the continued
fraction corresponding to the perturbation series.
Step 3a. For an integrable equation, there exists a natural number r, such that

Vn>r= B=0, (4%)

the continued fraction terminates unconditionally and is transformed into the convergent
P,./Q,. The perturbation series is geometric and the fraction P,/Q, gives an expression
for the sum of the series and the exact solution to the equation.

Step 3b. For non-integrable equation the solutions of which have a pole of order
g, it is necessary to find conditions under which for some natural » > 2¢ the inequality
(48) is true. Such conditions, if found, establish the connection between coefficients of
the equation and the parameters of its solution. When these conditions are met the pertur-
bation series becomes geometric, the continued fraction is transformed into a convergent
P,/Q, and gives the exact solution to the equation. If such conditions could not be found,
the equation can be solved by this method.

In practice, the equality to zero of three or four successive quantities B,, in step 3b
indicates the condition (48) is met and the exact solution is found, that can be checked by
substitution of the appropriate convergent P,/Q, into the original equation.

The advantages of the method include the ability to work with equations, the solution
of which has a pole of zero, fractional, or high natural order. In these cases, the perturbation
series should be transformed so that it matches a function with a pole of the first or
second order. For this the perturbation series can be term-by-term differentiated, raised
to a rational degree, inversed and so on.

The steps of the method are easy to automate with any of the modern systems
of symbol mathematics.

The method can be used as an empirical criterion of integrability of evolutionary
equations: if the perturbation series is geometric or becomes such under the condition
including only the coefficients of the equation, the equation with high probability relates
to integrable. After checking most of integrable evolution equations contained in [13], we
have not found any counterexample. Note that geometricity of the series under condition
that includes both the coefficients of the equation and the solution parameters, such as
(44) and (45), indicates that the equation is non-integrable.

The disadvantages of the method include inability to classify all exact solutions
of evolution equations and impossibility of solving equations with variable coefficients.

This research was supported by RFBR (project No. 16-01-00176-a).
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HEINPEPBIBHBIE IPOBH, METO/] BO3MYIIIEHUI U TOYHBIE PEIIEHUS
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HEJHMHEWHBIX BOJIIOIIMOHHBIX YPABHEHUI

A. Y. 3emnanyxun, A. B. bouxkapés

CapaToBCcKHii TOCYIapCTBEHHBIH TEXHHYECKHH YHUBEpCUTET UMeHH [arapuna 0. A.
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[Ipennoken HOBBIM METOZ MOCTPOEHHS TOUHBIX PEIICHUH HEITMHEWHBIX 3BONIOLMOHHBIX
YpaBHEHUI, OCHOBAaHHBIHM Ha MOCIEN0BATEIbHOM IIPUMEHEHUH METOa BO3MYILCHUH U ammapa-
Ta HENpEpHIBHBIX ApoOei. [loka3zaHo, 4TO TOUHBIE YeTHMHEHHO-BOTHOBBIE PEIICHUS BO3HUKAIOT
B TIPEZIENIBHOM ClTydae KaKk CyMMBI T€OMETPUYECKHX DPSAZ0B METO[a BO3MYIIEHHH Ha OCHOBE
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JTHMHEeapu30BaHHOH 3aaaun. IIporeMOHCTpUPOBaHO, YTO HEMpEPHIBHAS APOOb, COOTBETCTBYIO-
masi psxy BO3MYIICHHUH, OOpBIBAaeTCS, W OCTaBIIAsiCA MOIXOMMIas APoOb JaeT BBIpaKEHHE
JUISL ICKOMOTO TOYHOTO COJINTOHOIOJOOHOTO pPEIIeHHs. YCTaHOBJICHO, YTO IOPSIOK IOIXO-
nsmieit 1poOu He MeEHbIEe YABOSHHOTO MOpPSAIKa IONI0CAa PELIeHHs HCXOTHOTO YPaBHEHHS.
D¢ PeKTHBHOCTE METOa MPOAEMOHCTPHPOBaHA HA PEIICHHH HHTETPHPYEMBIX ypaBHEHHH: ce-
MmeiictBa Kopresera—ne Bpusa 5-ro mopsnka, TpeTbero mopsaka ¢ 5-10 IPOU3BONBHBIMH IIO-
crosHHbIMH, Kanomkepo—/leracnepuca—®okaca 1 HEUHTErpHpyeMoro ypaBHeHus Kypamoro—
CuBamuHckoro. IlpoBeneHHbIM aHamU3 MOKa3al, 4TO B Cllydyae MHTEIPUPYEMBIX YpaBHEHU
HETIpepBIBHAs PO0b, COOTBETCTBYIOMIAs CTEIIEHHOMY sy METOIa BO3MYIIEHHUI!, 0OphIBaeTCs
6€3yCIIOBHO, TO €CTh PsJ SABJISAETCS T€OMETPHYECKUM MM CTAaHOBUTCS TAKOBBIM IIOCHIE TIepe-
TPYNITHPOBKH ClIAaraeMbIX. [l HEHHTETPHPYEMBIX ypaBHEHHI TpeGoBaHNe OOpBIBAHUS HETpe-
PBIBHOH IpoOH, paBHOCHIBHOE TEOMETPHIHOCTH Psijla METO/A BO3MYIIIEHHH, IPHBOAUT K YCIIO-
BUSIM Ha KO3(hQUIMEHTH HCXOJHOTO YPaBHEHUsI, HEOOXOAUMBIM /ISl CYLIECTBOBAHHS TOYHBIX
COJMTOHONONOOHBIX pemreHnil. K mpenmyecTsaM MeToza, KOTOPBIA MOXET OBITH JIETKO pe-
aIN30BaH C ITOMOIIBIO JIFOOOH M3 CHCTEM KOMIBIOTEPHON MaTeMaTHKH, MOKHO OTHECTH BO3-
MOXKHOCTb pabOThI C YpaBHEHUSAMH, PELIEHHE KOTOPBIX UMEET MOJOC HYJIEBOTO, APOOHOTO MIIH
BBICOKOI'O HAaTypajabHOIO HOPSIKA.

Kniouesvie cnosa: HempepbiBHBIE IpoOH, METOI BOMYIICHHUH, TOUHBIE PEIICHNs, HEJTMHEHHbIE
SBOJIOLMOHHBIE YPaBHEHHUSI.
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