Одним из важнейших способов получения данных о надежности технических устройств является сбор и статическая обработка информации об износе и отказах, произошедших в процессе эксплуатации.

Полученные данные по отказам изделий (в результате испытаний или по данным эксплуатации) подвергаются статической обработке для получения следующих результатов:

- определения вида функции плотности распределения или интегральной функции распределения;
- вычисления параметров полученного распределения;
- установления с помощью критериев согласия степени совпадения эмпирического (экспериментального) распределения с предполагаемым теоретическим распределением;
- определения параметров надежности исследуемых изделий.

Своевременное выявление неисправностей электропривода существенно повышает не только срок службы всех элементов в целом, но и позволяет снижать время простоя электрооборудования, что в свою очередь снижает экономические затраты всего предприятия.

- 1. Голоднов Ю.М. Контроль за состоянием трансформаторов.- М.: Издательство "Энергоатомиздат" .1982.-153 с.
- 2. Гнеденко Б.В., Беляев Ю.К. Математический методы и теории надежности. М.: Издательство "Наука",165.-524с.
- 3. Зайков В.И., Берлявский Г.П. Эксплуатация горных машин и оборудования.- М.: Издательство "МГГУ",1996.257 с.
- 4. Котеленец Н.Ф., Кузнецов Н.Л. Испытания и надежность электрических машин.- М.: Издательство "Высшая школа", 1988.-145 с.
- 5. Пархоменко П.П., Согомонян Е.С. Основы технической диагностики. Кн.1. М.: Издательство —Машиностроение,1973. 223 с.
- 6. Пархоменко П.П., Согомонян Е.С. Основы технической диагностики. Кн.2. М.: Издательство —Энергия, 1981. 319 с.

Марасанов В.М. Оптимизация процесса дробления в щековых дробилках

(Россия, Екатеринбург)

doi: 10.18411/sr-10-02-2019-52 idsp: sciencerussia-10-02-2019-52

В статье на основе нового способа идентификации, предложенного автором [1], осуществлено математическое описание процесса дробления в щековых дробилках. Рассматривается скорость перемещения дробимого материала в дробящем пространстве дробилки в зависимости от формы дробящего пространства, угла наклона, величины хода и частоты качаний подвижного органа дробилки, размера разгрузочной щели, крупности продуктов дробления, сопротивления дробимого материала разрушению. Сопротивление материала разрушению определяется в результате пробного дробления и рссчитваются по формулам (1,2,3) В результате экспериментальных исследований определена зависимость производительности, потребляемой на дробление мощности и крупности продуктов дробления от выше перечисленных параметров. Полученные формулы можно применять при проектировании дробилок, комплексов дробления, а также для оптимизации и управления процессами дробления.

Основными показателями эффективности работы дробилок являются: производительность Q, степень дробления i и потребляемая на дробление мощность N. Максимальное значение производительности, потребляемая мощность, наименьшая

крупность продуктов дробления достигается при определённом сочетании величины хода, угла наклона, частоты качания подвижной органа дробилки и размера разгрузочной щели дробилки [2,3,4]. Величина максимального значения производительности, мощности потребляемой на дробление, крупность продуктов дробления определяются прочностью, структурой и крупностью подвергающейся дроблению породы.

Таким образом, возникают четыре задачи оптимизации: максимизация работы дробления при ограничении на потребляемую мощность; максимизация производительности, при ограничениях на степень дробления и потребляемую мощность; получение максимальной степени дробления, при заданной производительности и потребляемой мощности; минимизация потребляемой на дробление мощности, при ограничениях настепень дробления и производительность.

В работе приведены результаты решения поставленных задач оптимизации на основе математического описания процесса дробления в щековых дробилках с вертикальной неподвижной щекой [2].

$$Q_{\pi} = 227 K_{\varrho} \frac{L(c+0,5S-y)n}{\chi \varepsilon - 0,02 \sqrt{\chi \varepsilon} n + 0,0008 n^{2}};$$
 (1)

$$N = 0,03K_{N} \frac{QS\sqrt{n}}{ctg\alpha}; (2)$$

$$i = \frac{D_{\rm cp}}{d_{\rm cp}} = \frac{0.55}{k_d} \frac{D_{\rm cp} \sqrt{n(S+0.3\alpha)}}{c};$$
 (3)

где $\chi = D_{\rm cp}({\rm C}+0.5{\rm S})^{-1}; \; \epsilon = {\rm tg}\alpha{\rm S}^{-1}; \; Q_{\rm II}$ - производительность дробилки (равная ее пропускной способности), т/ч; N - мощность, потребляемая на дробление (без учета мощности холостого хода), кВт; i - степень дробления щековой дробилки; $D_{\rm cp}$ - средневзвешенный диаметр исходного материала, м; $d_{\rm cp}$ - средневзвешенный диаметр продуктов дробления, м; c - наименьшее расстояние между щеками на уровне разгрузочного отверстия, м; s - ход подвижной щеки на уровне разгрузочного отверстия, м; s - ход подвижной щеки в минуту, минs - глубина рифления футеровки дробящих плит, м; s - длина разгрузочного, отверстия, м; s - наибольший угол между плоскостями щек, град; s - корффициенты, учитывающие дробимость материала, определяются экспериментально [1]. В статье [1] в формуле (1) ошибка: в знаменателе извлекается корень квадратный из "s", ошибочно продлена линия знака корня квадратного.

Максимальную производительность и степень дробления щековой дробилки можно получить при полной загрузке двигателя привода дробилки. Учитывая вышесказанное, в данной работе оптимизация режима работы дробилки осуществлена путем определения $\max Qi$ при условии $N=N_{\rm H}$.

Оптимизация выполнена на основе математического описания процесса дробления в щековых дробилках с простым качанием щеки. Нахождение оптимального режима работы щековой дробилки - типичная задача на условный экстремум, которая решается методом неопределенных множителей (методом Лагранжа) [3].

Для упрощения введены обозначения: приравнивая k = 0.15; $\delta = 0.02$;

$$x = 0.5S; D = D_{cp}; t = tga; a = \sqrt{x + ay}; \beta = \sqrt{2Dtx(c + x)}; A = Dt$$

$$\delta an + 2\delta^2 x(c+x)n^2$$
; $B = K_1\beta + \lambda K_2 x$; $K_1 = 351 \frac{K_Q}{K_d} LD$; $K_2 = 36, 32 \frac{L}{t} K_Q K_N$;

составим функцию Лагранжа:

$$\Phi(c, x, n, y, \lambda) = Qi - \lambda (N_0 - N_{xp}) = x(c+x)(c+x-y)n^{2/3}B(cA)^{-1} - \lambda N_0$$
(4)

Приравнивая к нулю производные от Φ по c, x, n, y, λ , после некоторых упрощений получим систему пяти уравнений с пятью неизвестными c, x, n, y, λ :

$$(c^{2} - x^{2} + xy)Aa - cnx(c + x)(c + x - y)(2\delta^{2}an - \delta Dt);$$

$$[2(c^{2} + 3x^{2} + 4cx - 2xy - cy)B\beta + x(c + x)(c + x - y)(K_{1} + 2\lambda\beta K_{2})] \times Aa + 2nx(c + x)(c + x - y)(c + 2x)(2\delta^{2}na - \delta Dt)B\beta;$$
(6)

$$[2(c^2+3x^2+4cx-2xy-cy)B\beta+x(c+x)(c+x-y)(K_1+2\lambda\beta K_2)]$$

$$\times Aa + 2nx(c+x)(c+x-y)(c+2x)(2\delta^2na - \delta Dt)B\beta;$$
(6)

$$3A = 2n[4\delta^2 x(c+x)n - \delta a] \tag{7}$$

$$2K_2\lambda x\beta = K_1(ac + ax - 2x - 3ay); (8)$$

$$N_0 cA = K_2 x^2 (c + x)(c + x - y) n^{3/2}.$$
 (9)

Найдем решение этой системы, обеспечивающее максимум Qi при положительных c^* , x^* , n^* , y^* . Из уравнения (7) получим:

$$n^* = (\sqrt{13} - 1)(2\delta)^{-1} \sqrt{Dt[2x^*(c^* + x^*)]^{-1}}$$
 (10)

С учетом этой зависимости из соотношения (5) вычислим:

$$y^* = x^* - c^* (4x^* + 3c^*)^{-1}$$
(11)

С помощью уравнений (10), (11) и (8) из зависимости (6) получим: a(c+x)(7c-4x)=x(4x+3c).

Из этого соотношения видно, что

$$c^*=ex^*, (12)$$

$$c^*=ex^*,$$
 (12)
где $e = \frac{3(1-a) + \sqrt{9 + 94a + 121a^2}}{14a} \cong 3,634.$ (13)

Из уравнения (8) получим,

$$x^* = 0,0437 \sqrt{\frac{a^4 (7e - 4)^4 N_0^4 Dt}{k_Q^4 K_N^4 L^4 (e + 1)}}.$$
 (14)

Учитывая значения постоянных α и δ,

$$x^* = 1,474 \cdot 10^{-3} \sqrt[6]{\frac{N_0 D t^5}{K_\varrho^4 K_N^4 L^4}}.$$
 (15)

Численные расчеты для некоторых типоразмеров щековых дробилок показывают, что полученное решение обеспечивает максимум произведения Qi при $N = N_0$.

Порядок определения оптимального режима следующий: на данной дробилке определяются коэффициенты K_O , K_N , K_D по методике, приведенной в работе [1], затем по формулам (10), (11), (12), (13) и (15) последовательно вычисляются оптимальные значения параметров режима работы x^* , c^* , n^* , y^* . Если по техническим причинам оптимальные x^* , c^* , n^* , y^* установить невозможно, то необходимо принять наиболее близкие к оптимальным значения.

При анализе полученного решения выявлено, что максимум Qi получается

практически при отсутствии рифления на бронях $v^* \approx 0.114$, а значения n^* выше паспортных.

Во всех задачах оптимизация осуществляется относительно параметров с, S, n, y методом неопределенных множителей Лагранжа [3].

Определим значения c, S, n, y, обеспечивающие максимум Q при ограничениях

$$N_{\text{AP}}(\overline{c}, \overline{S}, \overline{n}, \overline{y}) = N_0; \quad i(c, S, n, y,) = i_0, \tag{16}$$

где N_0 — некоторое, наперед заданное значение потребляемой на дробление мощности. В качестве N_0 можно принять разность между номинальной мощностью двигателя привода дробилки и мощностью холостого хода [4]; i_0 — заданное значение степени дробления.

Введём обозначения: a = 0.15; b = 0.02; x = 0.5S; $t = tg\alpha$;

$$D = D_{cp}; K_1 = 908LK_Q; K_2 = 27,24Lt^{-1}K_QK_N; K_3 = 0, DK_d^{-1};$$

$$\alpha = \sqrt{x + ay}; \beta = \sqrt{2Dtx(c + x)}; A = Dt - b\beta n + 2b^2x(c + x)n^2;$$
(17)

$$B_Q = K_1 c + \lambda_1 K_2 x \sqrt{n}; \quad B_N = K_1 c + \lambda_3 K_2 x \sqrt{n}; B_i = \lambda_2 K_2 x \sqrt{n} + \mu_2 K_1 c.$$

Составим функцию Лагранжа

$$\Phi_{\varrho}(c, x, y, \lambda_{1}, \mu_{1}) = \frac{x(c+x)(c+x-y)n}{cA}B_{\varrho} + \mu_{1}K_{3}\frac{\alpha\sqrt{n}}{c} - (\lambda_{1}N_{0} + \mu_{1}i_{0}), \quad (18)$$

 λ_{1} , μ_{1} - множители Лагранжа.

Приравняем к нулю производные от Φ_Q по c, x, n, y, λ_1 , μ_1 и получим систему шести нелинейных алгебраических уравнений с шестью неизвестными $c, x, n, y, \lambda_1, \mu_1$:

$$\Phi_{c} = x \sqrt{n} \{ [(c^{2} - x^{2} + xy)B_{Q} + K_{1}c(c + x)(c + x - y)]A\beta - -ncx(c + x)(c + x - Y)(2b^{2}\beta n - bDt)B_{Q} \} - \mu_{1}K_{3}a\beta A^{2} = 0$$

$$\Phi_{x}^{'} = 2\alpha \sqrt{n} \{ [(c^{2} + 4cx + 3x^{2} - cy - 2xy)B_{\varrho} + x(c + x)(c + x - y)\lambda_{1}K_{2}\sqrt{n}]A\beta - nx(c + x)(c + 2x)(c + x - y)\sqrt{n}(2b^{2}\beta n - bDt)B_{\varrho} \} + \mu_{1}K_{3}aA^{2} = 0; \quad (19)$$

$$\Phi_{n}^{'} = x(c + x)(c + x - y)\sqrt{n}\{\lambda_{1}K_{2}xA\sqrt{n} + 2B_{\varrho}[Dt - 2B^{2}x(c + x)n^{2}]\} + \mu_{1}K_{3}aA^{2} = 0;$$

$$\Phi_{y}^{'} = 2x(c + x)\alpha B_{\varrho}\sqrt{n} - \mu_{1}K_{3}aA = 0;$$

$$\Phi_{n}^{'} = K_{2}x^{2}(c + x)(c + x - y)n\sqrt{n} - cAN_{\varrho} = 0;$$

$$\Phi_{n}^{'} = K_{3}\alpha\sqrt{n} - ci_{\varrho} = 0.$$

Одно из решений этой системы уравнений может быть решением оптимизации. Из физических соображений следует, что переменные с, х, п, у неотрицательны и находилось именно такое решение, хотя в постановке задачи этих ограничений нет. Процедура решения этой системы уравнений довольно громоздкая, поэтому сразу запишем приближенно

 $\Phi(c, x, n, \overline{\lambda_1}, \overline{\mu_1}) \leq \Phi(\overline{c}, \overline{x}, \overline{n}, \overline{y}, \overline{\lambda_1}, \overline{\mu_1}) \leq \Phi(\overline{c}, \overline{x}, \overline{n}, \overline{y}, \lambda_1, \mu_1)$ (20)

$$\frac{1}{n} = \frac{z}{b} \sqrt{\frac{Dt}{\frac{z}{2x(c+x)}}};$$
(22)

$$c = ex; (23)$$

$$\frac{-}{x} = \frac{49ab^4i^2N_0^2e^4(2-z)^2}{4(1+a)^3K_2^2K_3^2z^4};$$
(24)

$$\frac{1}{\lambda_1} = \frac{8K_1K_2(1 - 4a - 3a^2)}{K_2i_0(8 - 27a - 21a^2 + ae)\sqrt{x}};$$
(25)

$$\frac{-}{\mu_1} = \frac{8K_1K_3(2+3a+3a^2+ae)N_0}{K_2i_0^2(8-27a-21a^2+ae)\sqrt{x}}.$$
 (26)

Для упрощения записи введены обозначения:

$$z \approx 1 + \frac{e+1}{e+9+8a} - \frac{4(1+a)e+1)^2}{(e+9+8a)^3};$$
 (27)

$$e \approx \sqrt[3]{E+G} + \sqrt{E-G} \,, \tag{28}$$

гле:

$$E \approx 0.037 H_{\varrho}^{2} + 50.4 H_{\varrho} + 423); G \approx 2.55 H_{\varrho} \sqrt{37.8 + H_{\varrho}},$$
 (29)

$$H_{\varrho} \approx 27475 \frac{K_{N} K_{\varrho} D^{2} L}{K_{d}^{2} t i_{o}^{2} N_{0}} \sqrt{\frac{K_{\varrho} K_{N} K_{d} L i_{0}^{2}}{D N_{0}}}.$$
(30)

Указанное решение существует при выполнении условия

$$H_0 \ge 0.54,$$
 (31)

означающего, что оптимизация режима работы дробилки возможна только в определенной области значений N_0 и i_0 .

Числовые расчеты показывают, что полученное решение обеспечивает существование глобальной седловой точки для функции Лагранжа, так как

$$\Phi(c, x, n, \overline{\lambda_1}, \overline{\mu_1}) \le \Phi(\overline{c}, \overline{x}, \overline{n}, \overline{y}, \overline{\lambda_1}, \overline{\mu_1}) \le \Phi(\overline{c}, \overline{x}, \overline{n}, \overline{y}, \lambda_1, \mu_1). \tag{32}$$

Согласно теореме Куна–Таккера, выражение (32) является необходимым и достаточным условием того, что решение, описываемое формулами (21) - (26), одновременно является решением задачи максимизации Q при ограничениях

$$N(c, x, n, y,) \le N_0; \quad i(c, x, n, y) \ge i_0; \quad c, x, n, y \ge 0.$$
 (33)

Порядок определения оптимальных режимов следующий: задаваясь некоторыми значениями N_0 и i_0 и определив коэффициенты K_Q , K_N и K_i - для данного материала, по формуле (30) вычисляем H_Q . (если $H_Q \succeq 0.54$, то необходимо уменьшить i_0 или увеличить N_0). Затем, по (27) (28) вычисляем e и e (расчеты показывают, что для различных дробилок и руд e 1,3-1,6; e 2,5 -12; e 2,5 -12; e 3,5 -12; e 3,7 -12; e 3,7 -13,7 -14,9 -15,1 -15,

$$\max Q \approx 0.95 \frac{ctN_0}{K_N} \sqrt[7]{\frac{DN_0}{K_Q K_N K_d^2 L i_0^2}}.$$
 (34)

Значения λ_1 и μ_1 можно использовать для оценки степени влияния N_0 и i_0 на значение $\max Q$.

Аналогично решается вторая задача оптимизации: определить значения c , x , n , y , обеспечивающие максимум степени дробления i при ограничения

$$N(c, x, n, y) \le N_0; \quad Q(c, x, n, y) \ge Q_0; \quad c, x, n, y \ge 0.$$
 (35)

Функция Лагранжа для этой задачи имеет вид

$$\Phi_{i}(c, x, n, y, \lambda_{2}, \mu_{2}) = \frac{x(c+x)(c+x-y)n}{cA} B_{i} + K_{2} \frac{\alpha \sqrt{n}}{c} (\lambda_{2} N_{0} + \mu_{2} Q_{0}).$$
(36)

Решение этой задачи оптимизации по параметрам y, n, c совпадает с решением (21), (22), (23) первой задачи.

Далее:

$$x \approx 0,0318 \frac{K_N^2 Q_0^2 z}{t^2 N_0^2 e^2} \sqrt{\frac{Dt}{e+1}};$$
(37)

$$\lambda_2 \approx -\frac{66Dt}{K_d K_N Q_0^2 \sqrt{\tilde{x}(10+e)}}; \tag{38}$$

$$\approx 14.6 \frac{DtN_0(6,75+e)}{K_d K_N Q_0^2 \sqrt{\tilde{x}(10+e)}}.$$
(39)

Формулы (21), (22) и (23) справедливы и в этом случае, а формула (30) заменяется выражением

$$H_{i} = 0,43 \frac{K_{N}^{2} Q_{0}^{2}}{t^{2} N_{0}^{2}} \sqrt[3]{\frac{D L^{2} K_{N}^{2} K_{Q}^{2}}{t N_{0}^{2}}}.$$
 (40)

При этом остается верным ограничение (31), т. е. $H_i \ge 0.54$. Максимальное значение i можно определить по (3), подставляя вместо c, S, n, y их оптимальные значения c, x, n, y или по формуле

$$\max i \approx 233, 4 \frac{D\sqrt{LK_{\varrho}}}{K_{d}\sqrt{Q_{0}}}.$$
(41)

Вычисление оптимальных значений $c\,,x\,,n\,,y\,$, обеспечивающих минимизацию потребляемой на дробление мощности, при ограничениях

$$Q(c,x,n,y) \ge Q_0$$
; $i(c,x,n,y) \ge i_0$; $c,x,n,y \ge 0$; производится как и в предыдущих задачах. Функция Лагранжа

я как и в предыдущих задачах. Функция лагранжа

$$\Phi_{N}(c, x, n, y, \lambda_{3}, \mu_{3}) = \frac{x(c+x)(c+x-y)n}{cA}B_{N} +$$

$$+ \mu_{3} K_{3} \frac{\alpha \sqrt{n}}{c} - (\lambda_{3} Q_{0} + \mu_{3} i_{0}). \tag{43}$$

Оптимальные значения c , n , y также вычисляются по формулам (21) - (23):

$$H_{N} \approx 1.1*10^{-5} \frac{K_{d}^{2}Q_{0}i_{0}^{2}}{K_{Q}LD^{2}}; e \approx \frac{3+\sqrt{9+2(11+8\alpha)H_{N}}}{H_{N}};$$

$$x \approx 0.12 \sqrt[4]{\frac{D^{3} t Q_{0}(z^{2} - z + 1)}{K_{Q} K_{d}^{2} L e^{2} (e + 1) z}},$$
(44)

Величина z - по формуле (27).

Оптимальное значение $N_{\rm дp}$ определяется по формуле из соотношения

min
$$N = 1,018 \frac{Q_0}{te} \sqrt[8]{\frac{K_Q K_d^2 L t e^2 z^4 i_0^2}{(e+1)Q_0}}$$
 (45)

Указанное решение существует, если $H_N \le 3, 7$.

Полученные решения позволяют оценить, насколько реальный режим работы щековой дробилки отличается от оптимального для избранного критерия. Можно оценить и эффективность оперативного управления одним из параметров для компенсации влияния изменения физико-механических свойств дробимого материала и т. д.

Подробное исследование полученных решений является предметом самостоятельной работы, но некоторые особенности можно отметить. Оптимальные значения c, x, n, y зависят от свойств дробимого материала, типоразмера дробилки и заданных ограничений по N_0, Q_0 или i_0 (в зависимости от решаемой задачи). Введение указанных ограничений приводит к

появлению экстремальных зависимостей по c, x, n, y, которых нет в исходном математическом описании работы щековых дробилок (1-3).

- 1. Марасанов В,М, Дылдин Г.П. Математическое описание процесса дробления в щековой дробилке. Извести Горный журнал. 2017 № 8. (82-90)
- 2. Марасанов В.М. Белуженко В.М. Статитические характеристики щековой дробилки. В кн. Модели и алгоритмы управления процессами добычи и обогащения полезных ископаемых. Издание УПИ, вып. 133, Свердловск, 1976. с. 36-38.
- 3. Основы кибернетики. Под ред. К. А. Пупкова. М.: Высш. школа. 1974, с. 213-266.
- 4. Марасанов В.М. Математическое описание процесса дробления в щековых дробилках. –Изв. вузов, горный журнал, №2, 1967. с.160 166.
- 5. Марасанов В.М., Белуженко В.М. Оптимизация режима работы щековой дробилки. В кн.: Автоматическое управление технологическими процессами в горной промышленности. Межвуз.науч.темат.сб. Свердловск, 1981, 96 с., с. 81-84.
- 6. Марасанов В.М., Поршнев М.Н. Оптимизация процессов дробления и грохочения на дробильносортировочном заводе.-В кн.: Математическое обеспечение АСУ горных предприятий. Свердловск, 1974.-с.158-162.

Погорелов А.В., Киреев С.О., Корчагина М.В., Лебедев А.Р. Особенности конструкции поверхностного привода винтового насоса

Донской Государственный Технический Университет (Россия, Ростов-на-Дону)

doi: 10.18411/sr-10-02-2019-53 idsp: sciencerussia-10-02-2019-53

Аннотация

В статье приводится анализ наиболее распространенных поверхностных приводов винтовых насосных установок. Описаны особенности конструкций поверхностного привода винтового насоса и их недостатки. Предложен вариант технического решения, улучшающий показатели эффективной работы установки.

Ключевые слова: Поверхностный привод, винтовой насос, конструкция.

Abstract

The article provides an analysis of the most common surface drives of screw pumping units. The design features of the screw pump surface drive and their disadvantages are described. A variant of the technical solution that improves the performance of the installation is proposed.

Keywords: Surface drive, screw pump, design.