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Abstract

One of the key challenges in constructing a Bayesian
network BN is defining the node probability tables (NPT).
For large-scale BN, learning NPT through domain experts
knowledge elicitation is unfeasible. Previous works pro-
posed solutions to this problem using the concept of ranked
nodes; however, they have limited modeling capabilities or
rely on BN experts to apply them, reducing their applicabil-
ity. In this paper, we present an expert system based on
production rules to define NPTs with the purpose of en-
abling the definition of NPTs by experts with no ranked
nodes-specific knowledge. To create the rules, we elicited
data from an expert in ranked nodes. To validate our ap-
proach, we executed an experiment with a BN already pub-
lished in the literature to verify if, with our approach, a
practitioner can achieve the same or better configuration
for the NPTs. We used the Brier score to assess the NPTs
accuracy and evaluated the results with the Wilcoxon test.
All the Wilcoxon tests executed rejected the null hypothe-
ses that stated that the Brier scores for the original NPTs
method were the same as the new NPTs. By using our so-
lution, a practitioner can accurately define NPTs without
understanding the concept of ranked nodes.
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1. Introduction

BNs are probabilistic graph models and are used to rep-
resent knowledge about an uncertain domain [1]. BNs have
been applied to develop expert systems for many contexts
such as software process management [12] and effort es-
timation of web development projects [8]. There are two
challenges to build a BN: building the directed acyclic graph
(DAG) and defining the NPTs. In this paper, we focus on
the second challenge.

A BN’s NPT can be automatically learnt from data [6]
or by domain expert elicitation [4]. In practice, it is rare to
have an adequate database [4] and it becomes necessary to
elicit data from domain experts. However, manually defin-
ing the NPTs through domain experts can become unfeasi-
ble depending on the number of nodes and states, because
the complexity grows exponentially.

To reduce the effort of defining NPTs through domain
experts, Fenton et al. [4] proposed the concept of ranked
nodes. It consists of eliciting data from the expert through
a truth table composed of ordinal elements using four types
of weighted functions. Given the collected data, the calibra-
tion of the NPT (i.e., type of function, weights and variance)
is defined. The authors applied the approach in two cases:
safety assessment and software defect prediction, saving
84% and 93%, respectively, of effort compared to a manual
approach. On the other hand, to use this solution it is nec-
essary to understand the concept of ranked nodes, because
given the data collected from the expert, it is necessary to
manually calibrate the NPTs. Therefore, it is unpracticable
for domain experts with no ranked nodes-specific knowl-
edge.

Perkusich et al. [11] presented an approach based on
the concept of ranked nodes. They focused on encapsulat-
ing Bayesian networks-specific knowledge from the practi-
tioner and reducing the effort to collect data from the ex-
pert. On the other hand, it is limited to only one of the four
functions presented by Fenton et al. [4]. Therefore, it has
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limited modeling capabilities.
Our goal is to combine the strengths of the solutions

presented in Fenton et al. [4] and Perkusich et al. [11].
With this purpose, we automatized the approach presented
in Fenton et al. [4] by using production rules. To create
the rules, we elicited data from a BN expert to, for a set
of combination of evidences of the parent nodes, define the
best configuration of the NPT.

To validate our approach, we executed an experiment
and used a Bayesian network already published in the litera-
ture as the object of study. We randomly selected five nodes
from the given Bayesian network as the objects of study
and used them to verify if, with our approach, a practitioner
can achieve the same or better configuration for the NPTs.
For each node, we randomly selected twelve combinations
of states to elicit data from one practitioner, calculated the
Brier score and evaluated the results with the Wilcoxon test.
All the Wilcoxon tests executed rejected the null hypothe-
ses that stated that the Brier score for the old method was
the same as the new. Therefore, we conclude that we con-
siderably improved the accuracy of the model presented in
Perkusich et al. [10].

This paper is organized as follows. Section 2 presents
background on Bayesian networks and ranked nodes. Sec-
tion 3 presents the methodology used to build and evaluate
our solution. Section 4 presents the limitations of the solu-
tion and threats to validity. Section 5 presents our conclu-
sions and future work.

2. Background

Bayesian networks are probabilistic graph models and
are used to represent knowledge about an uncertain domain
[1]. A Bayesian network, B, is a directed acyclic graph that
represents a joint probability distribution over a set of ran-
dom variables V [5]. The network is defined by the pair
B = {G,Θ}. G is the directed acyclic graph in which the
nodes X1, . . . , Xn represent random variables and the arcs
represent the direct dependencies between these variables.
Θ represents the set of the probability functions. This set
contains the parameter θxi|πi

= PB(xi|πi) for each xi in
Xi conditioned by πi, the set of the parameters of Xi in G.
Equation 1 presents the joint distribution defined by B over
V .

PB(X1, . . . , Xn) =

n∏
i=1

PB(xi|πi) =

n∏
i=1

θXi|πi (1)

There are two challenges to build Bayesian networks:
building the directed acyclic graph (DAG) and defining the
NPTs [9]. In this paper, we focus only on defining the
NPTs. For this purpose, there are two techniques: through
(i) databases and (ii) domain experts [11]. Defining proba-
bility functions from databases can be automated by a pro-

cess called batch learning [6]. However, for many practi-
cal problems one rarely finds an adequate database. On the
other hand, manually defining probability functions through
domain experts can become unfeasible depending on the
number of nodes and states. As shown in the work of Fen-
ton et al. [4], inconsistencies could occur if domain experts
try to elicit exhaustively the probability function for a node
with a large number (e.g., 125) of states.

There are several methods to reduce this complexity and
to encode expertise in large scale probability functions.
Fenton et al. [4] proposes an approach for Bayesian net-
works composed of ranked nodes, which are the only types
of nodes used in Perkusich et al. [10]. Ranked nodes have
an ordinal scale (e.g., [Low, Medium, High]) and are based
on the doubly truncated Normal distribution (TNormal) lim-
ited in the [0, 1] region. This distribution is based on four
parameters: µ, mean (i.e., central tendency); σ2, variance
(i.e., confidence in the results); a, lower bound (i.e., 0);
and, b, upper bound (i.e., 1). This distribution enables us
to model a variety of shapes (i.e., relationships) such as a
uniform distribution, achieved when σ2 = ∞, and highly
skewed distributions, achieved when σ2 = 0.

In the approach presented in Fenton et al. [4],
µ is defined by a weighted function of the parent
nodes. There are four weighted functions: weighted
mean (WMEAN), weighted minimum (WMIN), weighted
maximum (WMAX) and mixture of WMIN and WMAX
(MIXMINMAX). According to the authors, these functions
are enough to represent the types of relationship necessary
for defining the probability function.

To define which function should be used, the model de-
veloper must perform “what if” analysis with the expert by
defining questions and collecting answers to define a truth
table. The model developer must analyze the answers and
define the most appropriate function. The variance is de-
fined empirically and it should reflect the expert’s confi-
dence in the results [4]. We show an example of questions
and answers in Table 1, in which the node C has two par-
ents, A and B. In this example, since C tends to be equal to
the smallest value of its parent nodes, the most appropriate
function is WMIN.

Table 1. Example of truth table to define the
weighted function for µ.

A B C
Very high Very high Very high
Very low Very low Very low
Very low Very high Very low
Very high Very low Low

Perkusich et al. [10] presented a simplified approach to
define the probability functions based on the one presented



by Fenton et al. [4]. Instead of “what if” analysis, it or-
ders the relationships between the child and parents nodes
given their relative magnitude. With this purpose, it is uses
a questionnaire to elicit knowledge from experts. For each
child node in the model, there is a question in the question-
naire. The questions are based on a template. The collected
data is analyzed using statistical methods and used as in-
put to an algorithm, which is presented in Perkusich et al.
[10], that defines the weights for the function of µ. The
advantage of this approach is its simplicity to elicit knowl-
edge from several experts and encapsulation of ranked node
and Bayesian networks-specific knowledge. The disadvan-
tage is its modeling limitation due to only using one type of
function (WMEAN) and fixed variance of 5.0E−4. Further-
more, given results of a case study presented in Perkusich et
al. [12], this approach is too abstract and sensible to errors.

3. Methodology

Our main goal is to increase the applicability of using BN
by encapsulating the complexity of calibrating the NPTs
from the domain experts. With this purpose, we present
an expert system based on production rules to, given a set
of input values, automatically calibrate a NPT. Our solution
is based on the concept of ranked nodes. Therefore, with
our solution, domain experts can calibrate the NPTs with-
out the need to understand how ranked nodes work. We
evaluated our solution with an experiment using a BN al-
ready published in the literature. In Section 3.1, we define
the problem in details. In Section 3.2, we present details
about our solution. In Section 3.3, we present the process
and results of our empirical evaluation.

3.1. Problem definition

More specifically, our goal is to combine the modeling
capabilities of the approach presented in Fenton et al. [4]
and the ranked nodes-specific knowledge encapsulation of
the approach presented in Perkusich et al. [11]. To elicit
knowledge from experts, as in Fenton et al. [4], we use
“what if” analysis (i.e., truth table results). Given the infor-
mation collected, we automate the calibration of the proba-
bility function.

To calibrate the probability function of a ranked
node it is necessary to define three parameters: f ,
V = (v1, ..., vk) and σ2, where f is the type of
function, V is a vector containing parent node’s
weights and k is the number of parent nodes. In
AgenaRisk1, these variables have the following range: f ∈
{WMEAN,WMIN,WMAX,MIXMINMAX},
w ∈ {1, ..., 5}, σ2 ∈ {5.0E−4, ...,∞} and k ∈ {1, ...,∞}.

Given that a probability function’s parameters are de-
fined, we can assess the calculations’ (i.e., predictions) ac-

1www.agenarisk.com

curacy with the Brier score [2]. For a single prediction,
which is our case, it is simply the square of the differ-
ence between the predicted probability (q) and the actual
outcome (o) [3], for each state: B =

∑s
n=1(on − qn)2,

where B is the Brier score and s is the number of possible
outcomes (i.e., number of states of the given node). Given
that we want the best possible calibration, the problem is to,
given data collected from the experts, find a combination of
parameters f and V = (v1, ..., vn) that minimizes B.

3.2. Solution

Our solution is an expert (i.e., production) system to em-
ulate the knowledge of a specialist on ranked nodes. With
this purpose we used production rules. A production rule
consists of two parts: a sensory precondition (i.e., IF state-
ment) and an action (i.e., THEN). If an input to the sys-
tem matches a precondition, an action is triggered. With
production rules it is possible to represent an expert knowl-
edge. For instance, the given rule represents our knowledge
regarding traffic: ”if the traffic light is red then stop”. To
define the rules, we relied on the knowledge of an expert
with five years of experience using ranked nodes. We im-
plemented the solution in Expert Sinta2.

In Fenton et al. [4], the authors present the usage of a
truth table composed of a combination of states of the parent
nodes to collect data from domain experts. Therefore, the
first step of our solution was to define which values the truth
table should have. With the truth table (i.e, combinations)
defined, we could define the preconditions of the system.

To elicit the weights for WMAX and WMEAN, Laitila
[7] recommends that the expert specifies to which point
(i.e., state) the mode of the child node rise when sa =
(0)ni=1 changes into sb = (0, ..., 0, sk = 1, 0, ...0);
and, for WMIN, the mode of the child node drops when
sa = (1)ni=1 changes into sb = (1, ..., 1, sk = 0, 1, ...1).
Therefore, for each configuration (i.e., number of par-
ent nodes), we considered 2 ∗ n cases, in which n is
the number of parent nodes. The combinations used
to calibrate a child node with three parents (A, B and
C) considering that all nodes are composed of the states
s = (V erylow,Low,Medium,High, V eryHigh) is
shown in Table 2. For n = 2, we added the combinations
(V eryLow,Medium and (Medium, V eryLow).

Then, the expert defined, for each possible combination
in the truth table, the best calibration for the NPT (i.e.,
the action): function type and weights. We defined σ2 =
5.0E−4, because, according to the expert, changing the
functions and weights is enough. In fact, in Perkusich et al.
[10], the authors defined σ2 = 5.0E−4 and had success. For
instance, if for the combination (V eryHigh, V eryLow)
the expected value is Low; for (V eryLow, V eryHigh),
is Low; for (V eryLow,Medium), is V erylow; and for

2http://www.lia.ufc.br/ bezerra/exsinta/



Table 2. Truth table for a child node with three
parent nodes.

A B C
Very high Very high Very low
Very high Very low Very high
Very low Very high Very high
Very low Very low Very high
Very low Very high Very low
Very high Very low Very low

(V eryHigh, V eryLow), is V erylow, then the best cali-
bration is: WMIN function, with weights 3 and 5. To verify
the calibrations, we used AgenaRisk and the Brier score. To
consolidate a rule, the mean Brier score for all combinations
was lower than 0.1.

The files with the rules defined by the expert are available
in a website3. We only defined rules for child nodes with
two and three parents, because whenever a node has more
than three parents, divorcing should be used to simplify the
BN [3].

3.3. Empirical evaluation

To evaluate our solution, we executed an experiment by
using a sample of nodes of the BN presented in Perkusich et
al. [10] as the object of study. The given BN was chosen due
to availability and it models the key factors of Scrum-based
software projects with the goal of assisting on the contin-
uous improvement of the team and processes. The BN is
composed of twenty child nodes. In other words, there are
twenty NPTs to be calibrated. The NPTs were calibrated
using the approach presented in Perkusich et al. [11] by
collecting data from forty practitioners.

The evaluation consists of applying our solution to cali-
brate a sample of NPTs from the object of study and com-
pare the accuracy of the new NPTs and the old ones. For this
purpose, we elicited knowledge from one expert (i.e., sub-
ject), whom has five years of experience working on Scrum
projects as a Scrum Master and was already familiarized
with the BN presented in Perkusich et al. [10]. First, we
elicited knowledge regarding the expected value of the NPT
for a set of combinations of the states of the parent nodes
to use as input to our system, I . Afterwards, we elicited
knowledge for a different set, E, in which E ∩ I = ∅,
and compared it with the system’s calculated values. In this
case, since we compare data generated by our solution with
the subject’s, there is no conflict on having the same sub-
ject to calibrate and evaluate the NPTs. We focused on the
following research question and informal null hypothesis:

3https://seke2016.wordpress.com/expertsinta-files/

RQ1: Comparing with the old model, does using the new
calibration maintain or improve the model’s accuracy given
the expert’s expectation?

H0: Accuracy decreases.
Due to space limitation, we only present data used to

calibrate two nodes. The data collected for all nodes is pre-
sented in a website4. In Figure 1, we present a summarized
view of the BN, in which the boxes represent a set of nodes
in the original BN.

Process quality

Work validation 
quality

Product increment 
quality

Product owner work 
quality

Sprint Review 
quality

Clients feedback 
outside of the 
Sprint Review

Clients 
feedback

Acceptance 
criteria check

Sprint goal 
check

Figure 1. Summarized view of the BN used as
object of study.

In Table 3, we present the data collected to elicit the ta-
ble for the node Work validation quality. For this node, by
using the rules defined in our system, the calculated cali-
bration was: f = WMEAN and V = (2, 1). In Table 4,
we present the data collected to elicit the table for the node
Sprint Review quality. For this node, the calculated calibra-
tion was: f = WMIN and V = (3, 3, 3).

For the experiment, we randomly selected five child
nodes, with two or three parents, of the BN presented in
Perkusich et al. [10] as the objects of study. The response
variable are the old and new models’ accuracy, which we
are assessed by the Brier scores. For each node, we ran-
domly defined twelve combinations of parent nodes’ states
and used them to, through a truth table, elicit data from the
expert regarding the expected central tendency of the given
node. For each combination, we calculate the Brier score
using the calibration presented in Perkusich et al. [10] and
using our calibration. We used the average Brier score to
compare the models’ accuracy. Given that the data did not
follow a Normal distribution, we used the Wilcoxon test. By
analyzing the results of the Wilcoxon tests, one fore each
node, we assessed RQ1.

The objects of the study were the nodes: Work valida-
tion quality, Product backlog quality, Software engineer-
ing techniques quality, Sprint Review quality and Product
Backlog is properly ordered. Due to space limitation, in Ta-
ble 5, we only show the elicited data and calculated Brier
scores for the node Work validation quality. For the old
(i.e., Perkusich et al.’s [10]) model, the average Brier score

4https://seke2016.wordpress.com/2016/03/17/seke-2016/



Table 3. Data elicited for the node Work validation quality.
Sprint Review quality Clients feedback outside of the Sprint Review Work validation quality

Very low Very high Low
Very high Very low High
Very low Medium Low
Medium Very low Low

Table 4. Data elicited for the node Sprint Review quality.
Stakeholder feedback Sprint goal check Acceptance criteria check Sprint Review quality

Very low Very high Very low Low
Very high Very low Very low Low
Very low Very low Very high Low
Very low Very high Very high High
Very high Very low Very high Low
Very high Very high Very low Medium

is 0.59 with σ = 0.61. For the new (i.e., our) model, the
average Brier score is 0.24 with σ = 0.35. By applying the
Wilcoxon test with α = 0.5, we had p − value = 0.0042.
Therefore, we reject the null hypothesis that states that the
median of the Brier score for the NPTs defined with our
approach are worse than the original.

For the node Product backlog quality, we had p −
value = 0.0085. For Software engineering techniques
quality, p − value = 0.041. For Sprint Review quality,
p − value = 0.033. For Product Backlog is properly or-
dered, p − value = 0.0017. Therefore, for all nodes, we
conclude that the new model is more accurate. A threat to
validity is that we might not have evaluated enough nodes
to assess RQ1.

4. Limitations

The limitations of this study are related to the production
rules definition and threats to validity regarding the exper-
iment. Regarding the production rules definition, we only
relied on the experience of one expert to define them. To
minimize this limitation, we selected an expert experienced
with ranked nodes and we used the Brier score to minimize
the chances of an incorrect rule definition. Furthermore,
the proposed system only handles child nodes with two or
three parents. However, in practice, this should not limit its
application, because whenever a node has more than three
parents, divorcing should be used to simplify the BN [3].
Additionally, the solutions were defined for ranked nodes
composed of a 5-point Likert scale. Finally, the definition
of the rules are based on values of AgenaRisk. On the other
hand, currently, it is the only tool that implements ranked
nodes.

Regarding the limitations of the experiment, it has con-
clusion, internal, and external threats to validity. The con-

clusion threats to validity are related to the sample sizes
used for the objects of study. The original BN was com-
posed of twenty child nodes and we only evaluated five.
Furthermore, to compare the accuracies, we only evaluated
twelve combination of states. The internal threats to valid-
ity are related to the subject selection process. On the other
hand, we minimized this threat by choosing an expert famil-
iarized with the BN, which minimized the threat of elicit-
ing inconsistent knowledge. The external threats to validity
concern the ability to generalize experiment results outside
the experiment setting. Since we only one BN and one sub-
ject, we cannot generalize our results. However, given that
ranked nodes are used and the data collected from the do-
main expert is consistent, there is no reason to believe that
our system would not output accurate data.

5. Conclusion

In this paper, we presented an expert system to, given
knowledge elicited from the domain expert, automate the
definition of NPTs of BN. Our solution is based on ranked
nodes and decreases the complexity of defining NPTs. Fur-
thermore, it increases the applicability of using BN, because
it encapsulates from the domain expert the complexity re-
garding calibrating the NPTs.

We improved the method of defining the probability
functions of the model presented in Perkusich et al. [10]
by automating the approach presented in Fenton et al. [4]
using production rules. We used the method to elicit data
from one expert and calibrate the model.

To evaluate our solution, we executed an experiment
with five randomly selected nodes, with two or three par-
ents, from a BN presented in the literature [10] as the ob-
jects of the study, in which we compared the accuracy of
NPTs defined with our approach with the originals. For



Table 5. Data collected and calculated Brier scores for the node Work validation quality.

Sprint Review quality Clients feedback outside of
the Sprint Review Work validation quality Old Brier score New Brier score

Very low High Low 0.5 0.0085
Low High Low 1.8 0.97
High Low High 1.8 0.97
Low Medium Low 0.5 0.18

Medium Low Medium 0.5 0.18
Medium Very high High 0.0041 0.18

Very high Medium High 0.0041 0.18
Very high Low High 0.5 0.0077

High Very low Medium 0.5 0.0077
Low Very high Medium 0.5 0.0077

Medium High Medium 0.5 0.18
Very low Very low Very low 0.0021 0.0013

each node, we randomly selected twelve combinations of
states to elicit data from the expert, calculated the Brier
score and evaluated the results with the Wilcoxon test. All
the Wilcoxon tests executed rejected the null hypotheses
that stated that the Brier score for the old method was worse
than the new. Therefore, we concluded that, with our so-
lution, a domain expert can calibrate NPTs with the same
accuracy as with Fenton et al. [4], because the expert sys-
tem was built following their approach, and without ranked
nodes-specific knowledge.

For future works, we intend to investigate the risks on us-
ing ordinal scales to elicit expert knowledge and use fuzzy
logic to model the elicited data from experts. Furthermore,
we plan on developing a tool that supports ranked nodes and
use genetic algorithms to calibrate the probability functions.
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