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Abstract—LiDAR-based 3D object detection provides the nec-
essary high-precision environmental sensing information for the
safe navigation of smart ships. However, relying on viewpoint
projections, voxelized point clouds, or using inefficient point
sampling methods, current LiDAR 3D object detection methods
treat all objects uniformly and quantitatively while ignoring the
specificity of sparse objects in the scene, which leaves less useful
information about sparse objects. In this paper, we propose an
end-to-end two-stage architecture, Object-Level Contrast Learn-
ing 3D Object Detection network (OCL), for better construction
of sparse object features and improving the ability of model to
detect sparse objects. In the first stage, the Contrast Learning
based Sparse Object Feature Enhancement training strategy is
proposed to decrease the feature discrepancy between sparse and
regular objects in object-level. In the second stage, we use the
Point-level Feature Multiple Aggregation Strategy to aggregate
finer point-level features of sparse objects. Extensive experiments
show that OCL achieves excellent performance on both Ship
dataset and KITTI dataset. Furthermore, our work proposes a
promising new idea for applying contrast learning to 3D object
detection.

I. INTRODUCTION

Accurate 3D object detection is critical to ensure safe navi-
gation of smart ships, since the precise localization information
it provides directly affects the effectiveness of downstream
tasks. LiDAR, as a high-precision detection instrument, offers
more precise position information for objects than conven-
tional images, and the LiDAR-based object detection keeps a
promising research area with significant potential.

However, there is a high variability in the sparsity of LiDAR
data due to the distance, the factors in LiDAR itself and the
environment, as shown in Figure 1. Objects closer to the sensor
are denser, while more distant objects are sparser. Moreover,
high-powered LiDAR used for ocean navigation may also
overheat, resulting in sparse objects. As a consequence, ob-
jects with more points and distinct contours are more easily
detected, while those with fewer points and weaker contours
are more challenging to detect.The topic of how to efficiently
identify sparse objects remains a challenging research subject.

The methods for 3D object detection have been extensively
studied from various perspectives, including 2D projection-
based methods [1], [2], 3D voxel-based methods [3]–[6],
and point-based methods [7]–[10]. These methods quantifies
all objects uniformly and ignores the specificity of sparse
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Fig. 1. Dense Ship Object vs. Sparse Ship Object.

objects in the scene, which makes sparse objects have even
less useful information. In an effort to generate finer feature
representations of objects, some researchers obtains voxel-
level features and then aggregates more precise point-level
features [11]–[15]. This kind of framework has been very
popular in recent studies, showing strong performance across
a variety of scenarios, and presenting opportunities for further
advancements, particularly in the detection of sparse objects.

In this paper, We propose Object-Level Contrast Learning
3D Object Detection network (OCL), an end-to-end two-
stage detector that addresses the unique feature specificity
of sparse objects in LiDAR data. OCL consists of two cru-
cial modules: Contrast Learning based Sparse Object Fea-
ture Enhancement(CLFE) and Point-level Feature Multiple
Aggregation(PFMA). To achieve better voxel-level feature
representation of sparse objects, we propose CLFE in the first
stage, which decreases the feature discrepancy between sparse
and regular objects by contrast learning. The feature of sparse
objects keeps more abstract than regular objects. Therefore,
in the second stage, we propose a finner feature aggregation
method PFMA to better perform point-level feature aggrega-
tion on sparse objects.

The effectiveness of our proposed theories has been demon-
strated through sufficient experimentation. Notably, the OCL
has proven to be highly effective for detecting sparse objects
in both the Ship dataset and the KITTI dataset, surpassing
the performance of existing methods. There is a 2.04% and
1.77% improvement in the mAP metric on the Ship dataset
and KITTI dataset, respectively, compared to the current
methods. Furthermore, our work proposes a promising new
idea for applying contrast learning to 3D object detection. We
summarize the following contributions of our method:

• By using contrast learning, we propose a sparse object
feature enhancement strategy to decrease the voxel-level
feature discrepancy between sparse and regular objects.

• Building upon prior research, we propose a multiple
aggregation strategy for finner point-level feature aggre-



gation of sparse object.
• Our proposed method shows excellent performance on

both Ship dataset and KITTI dataset compared to the
current methods.

II. RELATED WORK

3D Object Detection. Voxel-based methods [3]–[6] repre-
sent point cloud quantitatively with voxels for rapid analysis
of disordered point clouds using 3D Convolution. Point-based
methods [7]–[10] usually sample key points first to reduce
computation, and then use a symmetric function to extract
point-level features. Point-voxel-based methods [11]–[15] use
both voxel-level and point-level features of the point cloud to
combine their advantages for better detection. SA-SSD [11]
proposes an auxiliary network, which interpolates point-level
features to intermediate voxel layers, to auxiliary supervise
the training of backbone network. PV-RCNN [12] and PV-
RCNN++ [13] use a two-stage structure to get more precise
bounding box. In the first stage, getting the rough estimated
ROI region through the voxel-level backbone network and
RPN. In the second stage, aggregating the point-level feature
for precise bounding box generation. PDV [15] uses the
correlation between density and distance in point cloud to
aggregates more information in the second stage. Point-Voxel-
based methods are a popular research trend and have demon-
strated strong performance across various scenes, particularly
in larger-scale scenes. However, these methods still have great
potential for detecting sparse objects.

Contrastive learning. Contrast learning [16] is a popular
methodology that has been used in various fields recently [17]–
[21]. The basic concept of contrast learning is to create a
metric space where similar pairs of samples are pushed closer
together and dissimilar pairs are pushed further apart. The
most prevalent approach for implementing contrastive learning
is to apply some global transformations to the image and then
use a siamese network [20], [21]. The siamese network can be
trained to learn differences and similarities between pairs of
inputs. This apporach has proven to be simple and effective for
downstream tasks such as classification and regression that rely
on global features. However, object-level features are more
important for 3D object detection task than global features of
scene. How to effectively use contrast learning method in 3D
object detection task is still an area that needs to be explored.

III. METHOD

A. Network Architecture

Our network designed as a two-stage detector, as shown in
Figure 2. In the first stage, we utilize the backbone network,
refer to Second [4], with both 3D sparse convolution layers and
2D convolution layers to generate ROI regions from the point
cloud. The Contrast Learning based Sparse Object Feature En-
hancement module is also build on the feature extraction part,
which will be detailed in section III-B. In the second stage,
we use the Point-level Feature Multiple Aggregation (PFMA)
module to create more precise local features for sparse objects,
which will be detailed in section III-C. Besides, we also fuse

BEV-level ROI features to add global features for objects.
Finally, the parameters associated with the bounding box of
object will be optimized by classification and regression.

B. Contrast Learning based Sparse Object Feature Enhance-
ment

There is a significant difference in the distribution of points
between sparse and regular objects, which results in a large
semantic gap in their feature representation on the feature map
and limits the detection performance of sparse objects. To
address this issue, we propose the CLFE module, which is
specifically designed in object-level to decrease the feature
discrepancy between sparse and regular objects. This module
is only activated during training and does not add any time
cost burden to inference. Here we call the points in ground-
truth(GT) bounding box as info-points, and the features used
to judge the class of objects as intrinsic-feature. We perform
object intrinsic-feature invariant transformations on the info-
points of all objects in the input point cloud, such as local
down-sampling, center rotation and scaling, to simulate the
points distribution of sparse objects in the scene. The gen-
erated point cloud scene is input to the backbone network
together with the raw point cloud scene as a pair. Due to the
characteristics of the organization of the voxel space, we can
derive the position of each object on the feature map from
the step information in the convolution process. As mentioned
above, the corresponding position P and size S of each GT
on the feature map can be formulated as:

Pi = (GT x
i /stridex, GT y

i /stridey) (1)

Si = (GT l
i /stridex, GTw

i /stridey) (2)

where GT x
i , GT y

i , GT l
i , GTw

i denote the coordinates along X-
axis, Y-axis, and length, width of the ith GT, respectively;
stridex, stridey denote the spatial scaling of the current
feature map relative to the original point cloud space.

For computational convenience, we take the smallest square
region containing the ith object on the feature map as the
contrast loss denoted as Γi ∈ Rmax(Si)×max(Si)×C . The ith
object feature region in the original scene and the transformed
scene are denoted as ΓO

i and ΓT
i . Conventional contrast

methods, which directly calculating the feature gap between
ΓO
i and ΓT

i , may cause the network to fall into extreme
local optimization, resulting in the network not learning any
useful information. Inspired by SimSiam [21], We apply a
linear projection ς to a portion of the feature pair to enable
the training of the network to proceed as we expect, and the
contrast loss Lcontrast can be formulated as:

Lcontrast = C(ΓO, ς(ΓT )) (3)

where C denotes the calculation method of feature distance.
The feature region needs to be transformed into feature vec-

tors before it is used for contrast loss, and we propose several
feature transformation methods: direct contrast mode, average
value mode, maximum activation mode, and mean-maximum
activation mode, which we will discuss specifically in the
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Fig. 2. The Architecture of Object-Level Contrast Learning 3D Object Detection Network

ablation experiments. The total loss of this part Lauxiliary

can be formulated as:

Lauxiliary =

∑NGT

i (WO ×DO
i +WT ×DT

i )

NGT
(4)

DO
i = 1− C(Υ(ΓT

i ),Υ(ς(ΓO
i ))) (5)

DT
i = 1− C(Υ(ΓO

i ),Υ(ς(ΓT
i ))) (6)

where WO,WT is the predefined loss weight corresponding
to original and transformed objects, DO,DT is the calculated
feature distance of original and transformed objects, Υ is the
feature transformation method, and NGT denotes the number
of GT in the current scene. We choose cosine similarity
function as the distance calculation method C,

C. Point-level Feature Multiple Aggregation

Numerous studies have investigated ROI feature aggregation
method. PV-RCNN [12] uses the Farthest Point Sampling
(FPS) [22] to globally sample key points for feature aggrega-
tion. PDV [15] directly attaches voxel features to the gravity
centor of voxels (GCV) and uses them as key points for
subsequent feature aggregation to reduce the complexity of
FPS sampling and original point feature extraction. However,
these methods reduce the effective information of sparse
objects in the process of sampling or quantizing. Based on

the existing works, we propose some finner ROI feature ag-
gregation strategies aimed at improving the point-level feature
representation of sparse objects.

Specifically, we propagate the voxel-level features obtained
in the previous stage to the raw points within each voxel. The
point-level features are then aggregated at a fine-grained level
for the original points to form the local features of the object
using the following strategy:

Vanilla Aggregation. For raw points that have been as-
signed voxel-level features, we operate on them directly
through grid-based feature aggregation used in PDV [15].

Voxel Gravity Points Aggregation. First, The raw points
with voxel-level features attached are interpolated to the GCV
using a method similar to that used in PV-RCNN [12]. Then,
the features on the GCV are aggregated to the ROI by Vanilla
Aggregation. In this way, the feature offset problem caused
by attaching voxel features directly to the GCV can be well
corrected, and the features on GCV will contain more detailed
information.

Voxel Gravity Grid Points Aggregation. First, the raw
points with voxel-level features attached are aggregated to the
GCV by Vanilla Aggregation. Then, the features of the GCV
are aggregated to the ROI by Vanilla Aggregation again. The
ROI features obtained by this two-step aggregation strategy
will contain more detailed and deeper information about the
semantic features of the objects.

The effectiveness of the above strategies will be verified



in detail in the ablation study. Meanwhile, we impose a
simple graph convolution module for enhancing the feature
correlation between GCV to mine more sparse object features.

D. Training Losses

We use an end-to-end training strategy. The total loss Ltotal

consists of three parts, which are the contrast learning auxiliary
loss Lauxiliary for the feature extraction part, the region
proposed loss LRPN for the first stage, and the suggested
optimization loss Lrefine for the second stage:

Ltotal = Lauxiliary + LRPN + Lrefine (7)

Where Lauxiliary has been explained in detail in section III-B,
the region proposal loss LRPN is composed of classification
loss and box regression loss. The classification loss here adopts
focal loss. The box regression loss adopts smooth-L1 loss.
Therefore, the region proposal loss can be formulated as:

LRPN = Lfocal + Lsmooth−L1 (8)

The proposal refinement loss Lrefine is also composed of
classification loss and residual box regression loss. The classi-
fication loss here adopts IoU loss as same as PV-RCNN [12].
The residual box regression loss also adopts smooth-L1 loss.
Thus, the proposal refinement loss can be formulated as:

Lrefine = LIoU + Lsmooth−L1 (9)

IV. EXPERIMENTS

A. Datasets and Implementation Details

Datasets. We evaluate our model on both Ship dataset and
KITTI [23] dataset. The Ship dataset is composed of actual
ship data obtained from various locations such as ports and
shoreside, utilizing 32-line and 128-line LiDAR. The LiDAR
data is filtered, labeled, and divided into a training set (3427
samples) and a test set (856 samples) with a ratio of 8:2. The
training set is used to train the detection model, while the
test set is used to verify the effectiveness of our model. The
3D autonomous driving dataset KITTI also be divided into a
training set (3712 samples) and a validation set (3769 samples)
to further verify our theory. For the Ship dataset, the detection
range is [-400m, 400m] for the X axis, [-50m, 450m] for the
Y axis, and [-10m, 20m] for the Z axis. We divide the raw
point cloud into voxels of size (0.5 m, 0.36m, 0.75m). For the
KITTI dataset, the detection range is set to be [0, 70.4m] for
the X axis, [-40m, 40m] for the Y axis, and [-3m, 1m] for the
Z axis. We set the voxel size to be (0.05m, 0.05m, 0.1m).

Training and Inference Details. For the second stage
point-level feature aggregation, we use the last two interme-
diate voxel-level features, and the spherical query radius is
set to [3,6] in Ship dataset, [0.4,0.6] in KITTI dataset. For
generating transformed point cloud data, we set the object
scaling to [0.95,1.05], the object points down-sampling range
to [0.1,0.4], and the minimum number of the object points
threshold to 10. Our model is trained using Adam [24]
optimizer with initial learning rate set to 0.01 and one-cycle

strategy [25] for learning rate update. The training environment
is RTX 3090 for a total of 80 epochs. For the preprocessing
of the training data, we apply some 3D object detection data
augmentation strategies, including global rotation, random flip,
global scaling, and ground truth data augmentation [4].

B. 3D Detection on the Ship Dataset

Table I presents the performance of our proposed method
on the Ship test set, where our method achieves optimal per-
formance on CargoShip, EngineeringShip, and all categories.
Specifically, the results on AP |R40 have shown a significant
improvement of 2.92%, 2.41%, and 2.04% for CargoShip,
EngineeringShip, and all categories, respectively, when com-
pared to the current optimal results.In comparison to our
benchmark method PDV, our proposed method outperforms
PDV by 2.92%, 2.82%, 2.41%, and 2.04% on CargoShip,
TourBoat, EngineeringShip, and mAP, respectively. Figure 3
intuitively shows the detection results of our proposed method
and the benchmark model PDV on the Ship test set. The lidar
in the scene is located in the lower center of the image. Our
method accurately detects sparse objects, which effectively
demonstrates the effectiveness of our method.

Ours

PDV

Fig. 3. Snapshots of our 3D detection results on the Ship test set. Green
boxes for CargoShip and yellow for ContainerShip.

C. 3D Detection on the KITTI Dataset

We also evaluated the effectiveness of our proposed method
on the KITTI validation set, and the results are shown in Table
II. Our method achieves state-of-the-art multiclass results,
with 3D AP|R40 improving 0.07%, 1.98%, and 2.47% on the
moderately difficult car, pedestrian, cyclist categories, respec-
tively, and a 1.77% improvement on the average multiclass
accuracy mAP. Figure 4 visualizes the detection results of our
proposed method and the benchmark model PDV on the KITTI
validation set. Compared with the benchmark model, our
method is also able to accurately detect some sparse objects
at longer distances in the scene, which have fewer points than
the sparse ship objects. This result further demonstrate the
effectiveness of our method for detecting sparse objects.

D. Ablation Studies

We performed ablation experiments on the Ship dataset for
each of our modules and validated the effectiveness of our
modules using mAP.



TABLE I
THE SHIP TEST SET FOR MULTI-CLASS DETECTION, WITH 3D AVERAGE PRECISION OF 40 SAMPLING RECALL POINTS AND 0.7 INTERSECTION OVER

UNION.

Method CargoShip ContainerShip TourBoat EngineeringShip mAP
Second(2019) 51.52 98.89 89.47 55.13 73.75
PV-RCNN(2020) 82.88 100.00 96.71 84.18 90.94
IA-SSD(2022) 64.67 100.00 96.78 81.96 85.85
PDV(2022) 83.18 100.00 91.50 90.00 91.17
Ours 86.10 100.00 94.32 92.41 93.21
Improvement 2.92 2.41 2.04

TABLE II
THE KITTI VAL SET FOR MULTI-CLASS DETECTION, WITH 3D AVERAGE PRECISION OF 40 SAMPLING RECALL POINTS.

Method AP3D@Car-R40 (IoU=0.7) AP3D@Pedestrian-R40 (IoU = 0.5) AP3D@Cyclist-R40 (IoU = 0.5) mAPEasy Moderate Hard Easy Moderate Hard Easy Moderate Hard
VoxelNet(2018) 81.97 65.46 62.85 57.86 53.42 48.87 67.17 47.65 45.11 58.93
Second(2019) 90.71 81.73 78.79 57.46 52.86 47.95 81.29 65.80 62.94 68.84
PV-RCNN(2020) 92.04 84.06 81.99 65.39 58.06 53.31 90.47 72.42 68.26 74.00
IA-SSD(2022) 90.94 83.00 80.04 56.98 52.50 47.74 92.80 71.81 67.47 71.48
PDV(2022) 92.39 85.11 82.78 64.77 58.10 53.41 89.94 72.03 67.78 74.03
Ours 92.76 85.18 83.00 66.70 60.08 55.34 93.91 74.89 70.36 75.80
Improvement 0.37 0.07 0.22 1.31 1.98 1.93 1.11 2.47 2.10 1.77

Ours

PDV

Fig. 4. Snapshots of our 3D detection results on the KITTI val set. Green
boxes for car, cyan for pedestrian and yellow for cyclist.

Components Ablation. We first conducted ablation exper-
iments for each module in our network. As show in Table III,
CLFE represent the Contrast Learning based Sparse Object
Feature Enhancement strategy, PFMA represent the Point-level
Feature Multiple Aggregation strategy. Exp.1 is the benchmark
model PDV, while Exp.2 adds the CLFE strategy, resulting in
a 1.88% improvement on mAP compared to the benchmark
model, which validates the effectiveness of the CLFE training
strategy. Exp.3 uses the PFMA as the ROI feature aggregation
strategy, resulting in a 0.64% improvement on mAP compared
to the benchmark model, which validates the effectiveness of
the PFMA strategy. Experiment 4 is our proposed method,
which improves mAP by 2.04% compared to the benchmark
model.

TABLE III
ABLATION EXPERIMENTS OF TWO STRATEGIES ON NETWORK

PERFORMANCE.

Exp. CLFE PFMA mAP
1 91.17
2

√
93.05

3
√

91.81
4

√ √
93.21

Methods For Measuring Feature Discrepancy Between

Objects. In this part, we conducted ablation experiments on
the methods that can be used to measure feature discrepancy
between objects. In Table IV, Flatten indicates that the values
of the two feature regions are flattened directly, and the
flattened vector is used to calculate the contrast loss; Avg and
Max indicates that we use an extra average-pooling layer and
max-pooling layer, respectively, to further abstract the object
features and compress them into a vector, which is then used to
calculate the contrast loss; Avg-Max indicates that the vector
used to calculate the contrast loss is obtained by concatenating
the abstract object vector used in the Avg and Max strategies.
use the concatenate feature of avg and max to calculate the
contrast loss. As shown in Table IV, Exp.2 and Exp.3 are
improved by 1.31% and 1.83%, respectively, compared with
Exp.1, which indicates that the object feature vector after
further abstraction by the pooling layer can better measure
the feature discrepancy between sparse and regular objects,
among which the max-pooling can relatively better express
the object features. On the contrary, the performance of Exp.4
on mAP are decreased by 0.13% compared with Exp.3, which
indicates that the object feature representations obtained from
the two pooling layers mentioned above have some conflicts
that cannot be used directly.

TABLE IV
ABLATION ANALYSIS OF DIFFERENT METHODS FOR MEASURING FEATURE

DISCREPANCY BETWEEN OBJECTS.

Exp. Flatten Avg Max Avg-Max mAP
1

√
91.22

2
√

92.53
3

√
93.05

4
√

92.92

Point-level Feature Multiple Aggregation Strategy. In
this part, we validate the effectiveness of three different ROI



feature aggregation strategy, which have detailed in section
III-C. As shown in Table V, VA represent the Vanilla Ag-
gregation Strategy, VGPA represent the Voxel Gravity Points
Aggregation Strategy, VGGPA represent the Voxel Gravity
Grid Points Aggregation Strategy. The experimental results
have 0.69% and 0.58% improvement on mAP for VGPA
and VGGPA respectively, which well validate our previously
proposed theory.

TABLE V
ABLATION ANALYSIS OF DIFFERENT STRATEGIES FOR ROI FEATURE

AGGREGATION.

Exp. VA VGPA VGGPA mAP
1

√
90.54

2
√

91.23
3

√
91.81

V. CONCLUSION

Current methods treat all objects uniformly, ignoring the
specificity of sparse objects in the scene, which leaves less
useful information about sparse objects and is not conducive
to the detection of 3D sparse objects in ocean scene. To
address this limitation, Object-Level Contrast Learning 3D
Object Detection network (OCL) is proposed, which is an
end-to-end two-stage architecture that takes into account the
feature specificity of sparse objects. In the first stage, the
Contrast Learning based Sparse Object Feature Enhancement
training strategy is designed in object-level to decrease the
feature discrepancy between sparse and regular objects. In
this procedure, The voxel-level features of sparse object can
be enhanced. In the second stage, the Point-level Feature
Multiple Aggregation strategy is utilized to better aggregate
the point-level features of sparse object. The effectiveness
of our proposed strategies are verified in extensive experi-
ments on Ship dataset and KITTI dataset. Our work uses
the characteristics of LiDAR data to generate sample pairs
in a relatively simple way for contrast learning. However, the
relationships between more objects in the scene have not been
fully explored. Furthermore, we believe that there keeps a
great deal of opportunity to explore the application of contrast
learning in 3D object detection.
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