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Abstract—Knowledge graph completion plays a crucial role
in downstream applications. However, existing methods tend to
only rely on the structure or textual information, resulting in
suboptimal model performance. Moreover, recent attempts to
leverage pre-trained language models to complete knowledge
graphs have proved unsatisfactory. To overcome these limitations,
we propose a novel model that combines structural embedding
and semantic information of the knowledge graph. Compared
with previous works based on pre-trained language models,
our model can better use the implicit knowledge of pre-trained
language models by using relation templates, entity definitions,
and learnable tokens. Furthermore, our model employs a multi-
head attention mechanism to transform the embedding semantic
space of entities and relations obtained from the knowledge
graph embedding model, thereby enhancing their expressiveness
and unifying the semantic space of both types of information.
Finally, we utilize convolutional neural networks to extract
features from the matrices created by combining these two
types of information for link prediction and triplet classification
tasks. Empirical evaluations on two knowledge graph completion
datasets demonstrate that our model is effective for both tasks.

Index Terms—Knowledge graph completion, Knowledge
graph, Link prediction

I. INTRODUCTION

A knowledge graph (KG) is a structured representation of
the objective world that captures information about objects and
their relations, typically composed of fact triples that describe
the relations between head entities and tail entities [1]. KGs
have a significant impact on various natural language pro-
cessing tasks [2], such as question answering, information re-
trieval, and recommendation systems. However, the challenge
of the incompleteness problem in KGs has long impeded their
effectiveness in various downstream applications.

To address this problem, researchers have turned to knowl-
edge graph completion (KGC) methods, which aim to predict
missing entities or relations in factual triples. Building on
the success of word embeddings in capturing semantic in-
formation, knowledge graph embedding (KGE) models have
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been developed to address the link prediction problem [3],
[4]. These methods treat entities and relations as continuous
low-dimensional embeddings that can effectively preserve the
semantics and intrinsic structure of entities and relations,
allowing for computable representations. By fully compre-
hending the existing structures in the knowledge graph, the
KGE models achieve missing link prediction by designing
corresponding scoring functions and learning low-dimensional
continuous vector representations of entities and relations. This
methodology enables effective knowledge graph completion
by accurately predicting missing entities or relations.

KGE has become the most popular method for KGC due
to its simplicity and efficiency. However, this approach is
limited to using structural information from existing KGs and
is not effective for predicting entities and relations that are
not present in the training set, thus making it less suitable
for completing sparse knowledge graphs. Therefore, it is
crucial to incorporate relevant textual information, such as
entity and relation definitions and descriptions, to enrich the
representation vector [5], [6].

Recent advancements in deep learning have led to the
development of pre-trained language models (PLMs) such as
BERT [7], which have shown outstanding performance in nat-
ural language processing tasks by learning word embeddings
containing rich contextual semantic information from large-
scale natural language text data. As a result, using PLMs to
encode text data in knowledge graphs has attracted consider-
able attention. However, most PLM-based KGC models [5],
[8] simply concatenate entity and relation labels as model
inputs, failing to take full advantage of the implicit knowledge
contained within PLMs and resulting in ineffective models.

Based on the aforementioned issues, we propose SS-KGC, a
novel model for KGC that integrates both structural embedding
and textual semantic information. Our model utilizes PLMs to
encode textual data in triples, which are then transformed into
coherent sentences using relation templates. Additionally, en-
tity definitions are incorporated to better express the semantics
of the triples, and learnable tokens [11] are added to improve
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Fig. 1. The framework of SS-KGC.

the model’s effectiveness.
Furthermore, the model employs a multi-headed attention

mechanism [9] to transform the semantic space of the em-
bedding vectors of entities and relations obtained through
a basic KGE model. This enhances the model’s expressive
ability and unifies the space of semantic and structural in-
formation, making their integration more reasonable. Finally,
the model utilizes convolutional neural networks (CNN) for
feature extraction and is evaluated on link prediction and
triadic classification tasks [10].

Experimental results demonstrate that our model outper-
forms the baseline models on two benchmark test sets for
KGC. In summary, our contributions are as follows:

• We propose a novel KGC model based on PLMs, which
combines the structural and semantic information for
KGC and has achieved excellent results in experiments.

• We experimentally demonstrate the effectiveness of our
model to combine semantic information and structural
embedding of knowledge graphs for KGC.

II. METHOD

We propose SS-KGC to combine structural embedding and
text semantic information for KGC. As shown in Figure 1,
SS-KGC effectively utilizes both textual and structural infor-
mation from the knowledge graph for KGC. Text semantic in-
formation comes from the labels and definitions in knowledge
graphs. The structural embedding is obtained by pre-training
the KGE model.

A. Data Processing

As our model utilizes BERT to encode text information, it
is necessary to convert the triple data format of the knowledge
graph into the input format of the BERT. For the triple data,
it includes meaningful entity and relation labels and entity
definitions, so it needs to deal with combining entity and
relation labels into sentences and adding entity definitions
into them. When converting entity and relation labels into
sentences, we adopt the method of designing different con-
version templates for different relations to convert triples into

TABLE I
PARTIAL RELATIONS CONVERSION TEMPLATE.

Relation template
/film/film/genre The genre of [X] is [Y] .
/music/genre/artists The music genre of [Y] is [X] .
/people/person/gender The gender of [X] is [Y] .
/film/film/country The country [X] belongs to is [Y] .
/film/film/language The language of the film [X] is [Y] .

coherent sentences [6], avoiding the problem of incoherent
sentences caused by direct splicing, so that the model can
better encode contextual semantic information. Table I shows
the transformation templates of some relations, where [X]
represents the head entity and [Y ] represents the tail entity.

To fully express the semantic information of triples, we
consider incorporating the definitions of entities into the model
and introducing special tokens in the BERT vocabulary as
learnable tokens [11]. These tokens are learnable during the
training process, allowing the model to adapt to specific tasks
and data by learning additional information that is not fixed.
By using learnable tokens, the model can learn new repre-
sentations suitable for the task when training data is limited
or tasks are complex, which improves the model’s ability to
generalize to new data and make accurate predictions.

B. Text Semantic Encoding

The text data of the KG is integrated into coherent sentences
after passing through the data processing layer as the input of
the PLM. We use the BERT [7] as the encoding model. After
the tokenizer of the BERT and the data processing operations,
the input of the model is as follows:

S = [CLS], [SPECIAL], Edefinition, Tsentence, [SPECIAL], [SEP ] (1)

Among them, the input sentence begins with the [CLS] special
token and ends with the [SEP ]. Edefinition are the entity
definitions, which are used to supplement the information of
the head and tail entities. [SPECIAL] is a special token
added to the BERT vocabulary as a learnable token to make the
model more effective. Tsentence is the sentence transformed
by the designed relational template. As shown in Figure 1,
taking the triple (Happy Feet, /film/film/genre, comedy) as an
example, the transformed sentence is ”The genre of Happy
Feet is comedy.”.

Then, we use BERT to dynamically represent the word vec-
tor. Through its bidirectional encoding capability, the model
can effectively obtain word embedding containing rich con-
textual semantic information. After multi-layer encoding, the
sentence embedding matrix containing rich semantic informa-
tion is finally obtained. Its dimension is db × dl × dk, which
db is the size of the data batch, and dl is the sentence length
in BERT, dk is the word embedding dimension of the BERT.

C. Knowledge Graph Embedding

The knowledge graph embedding layer mainly designs a
simple KGE model to obtain the structure embedding of enti-
ties and relations, which is used as the structural information



of the model for KGC. Based on the improvement of the
TransE [3] model, we use f = h × r − t as the KGE score
function.

To enrich the expressive ability of the embedding of entities
and relations, after obtaining the embeddings of entities and
relations, the semantic space is transformed through the multi-
head attention mechanism [9], and the semantic space of the
two types of information is unified by the linear layer of the
last layer. The number of heads in our experiment is 3. The
self-attention is calculated as follows:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (2)

Where Q is the query vector, K is the key-value vector,
V is the value vector, and d is the embedding dimension.
When using the multi-head attention mechanism, multiple
self-attention operations are performed on the same vector
sequence. Each group uses a different parameter matrix to
calculate attention separately and obtain multiple outputs. The
calculation formula is as follows:

headi = Attention(QWQi,KWki, V WV i) (3)

Among them, WQi, Wki, WV i are the ith mappings. These
outputs are finally concatenated together.

Multihead = Concat(head1, head2, ..., headh)Wo (4)

Among them, the parameter matrix Wo is used to unify the se-
mantic space output by the independent attention mechanism.

D. Convolutional Neural Network Layers

After obtaining both types of information, we utilize a
convolutional neural network layer for further feature extrac-
tion in downstream tasks such as link prediction and triple
classification [10]. The key advantage of CNNs is their ability
to capture local features, which are automatically combined
and filtered to obtain semantic information at different levels,
as reflected in the text by N-gram features. Additionally, CNNs
achieve good results with faster training speeds due to their
parameter-sharing property.

The CNN layer takes as input the sentence embedding
matrix obtained from combining the semantic and structural
information of the knowledge graph. The input matrix is
convolved using 256 convolution kernels of sizes 2, 3, and 4,
and then pooled using global max pooling in the pooling layer.
Finally, the global feature vector is mapped to the probability
distribution of the output category using a fully connected
layer for classification.

E. Training

The model performs negative sampling through a combi-
nation of two negative sampling strategies [6]: (1) Randomly
replace the head or tail entity of the triple with other entities
to generate a triple that does not exist in the knowledge graph.
(2) Using the KGE model to replace the head or tail entity with

TABLE II
THE STATISTICS OF DATASETS.

Dataset |E| |R| Train Valid Test
Wiki27K 27122 62 74,793 20,242/1994 20,244/1994
FB15K-237-N 13,104 93 87,282 14,082/2046 16,452/2048

other entities with high confidence produces triples that do not
exist in the knowledge graph, thereby improving the quality
of negative samples. Because the latter method is relatively
complex, each of these two methods provides 50% negative
samples for the model. The model is trained with the cross-
entropy loss function.

L = −
∑

G∈g∪g′

(yGlog(σ(c)) + (1− yG)
log((1− σ(c)))

k
) (5)

Among them, G represents a triplet containing positive and
negative samples, and yG values are 0 and 1, which represent
the label of the triple. σ is softmax function, c represents
the fully connected layer output of the final part of the model,
so σ(c) represents the classification score of the triplet. k is a
positive negative sample proportion and its value is 3 in our
experiment.

III. EXPERIMENTS

A. Datasets and Evaluation Metrics

We employ two sub-datasets from Wikidata and Freebase.
These datasets constitute the benchmark dataset of the PKGC
model [6], which is built on the basis of Wikidata and
manually annotated with real negative triples to form a new
dataset named Wiki27K.

The FB15K-237 dataset contains many mediator (CVT)
nodes, which result in Cartesian product relations that do
not make sense for the corresponding prediction tasks and
inappropriately increase the accuracy of the model [12]. To
address this issue, [6] created a new dataset called FB15K-
237-N by removing the relations containing mediator nodes
in FB15K-237. Table II shows details of the datasets. The
numbers in the right two columns represent the number of
triples used for evaluation under the closed world assumption
(CWA) and open world assumption (OWA), respectively.

We evaluate the performance of KGC models on two tasks:
link prediction and triple classification. The most commonly
used indicators for link prediction are MRR and Hits@n (n is
1, 3, 10), and the final results are the average values obtained
by replacing the head entity and tail entity, respectively.

The triple classification task aims to determine whether a
given triple is correct, making it essentially a binary classi-
fication task. Therefore, accuracy and F1 score are used to
evaluate the performance of triple classification. Our model is
implemented using PyTorch based on the PKGC, with bert-
base-cased used as the PLM.



B. Baselines

To establish a baseline for our study, we select some
representative models, including TransE [3], TransC [13],
ConvE [14], RotatE [4], KG-BERT [5], MTL-KGC [8],
StAR [14], and PKGC [6]. When compared to PLM-based
models, the original StAR and PKGC models, which use the
RoBERTa-Large [16], have a large number of parameters and
a high negative sampling ratio, leading to long training times.
To ensure a more fair comparison of model performance, we
modified the StAR and PKGC models to use bert-base-cased
as PLM for the experiment, labeled as StAR (BERT-base) and
PKGC (BERT-base), respectively.

C. Main Results and Analysis

Table III presents the link prediction results of our model
and the baseline models on the datasets of Wiki27K and
FB15K-237-N. Table IV lists the comparative results of these
models on the triple classification task under the two datasets.
All metrics are multiplied by 100. Based on the experimental
results, the following conclusions can be drawn:

(1) Comparing the results of the link prediction and triple
classification experiments, we observe that, in the PLM-based
models, the direct concatenation of entities and relations is
less effective than the method of transforming triples into
coherent sentences through templates. This suggests that the
input format of the data has a significant impact on the model’s
performance. As PLMs are trained on natural language text,
input data that is coherent sentences are consistent with the
training data to some extent. This enables better utilization of
the implicit knowledge of PLMs, resulting in sentence embed-
ding representations that contain rich semantic information.

(2) In the comparative experiments against these baseline
models, our model achieved the best results. This indicates that
both textual semantic information and structural information
are crucial for KGC tasks. In comparison to the StAR, our
model’s use of pre-trained structural embeddings can effec-
tively solve the problem of mismatch between the fine-tuning
speed of the BERT and the training speed of the KGE model,
leading to desirable results.

(3) Compared to the PLM-based models, our model
achieves desirable results by using BERT-base as PLM. This
suggests that the method of transforming triples into coherent
sentences can better utilize the implicit knowledge in PLMs,
and performance improvement can be achieved by incorporat-
ing entity definitions and learnable tokens. Other models may
require larger PLMs to obtain textual semantic information.
Additionally, compared to the method of using the [CLS]
vector directly to represent the semantic information of triples
for classification, the feature extraction method by extracting
features from the entire sentence embedding matrix using a
feature extractor can achieve more effective results. This may
be because the [CLS] vector does not pay enough attention
to the semantics of entities and relations, while the local
features obtained through CNNs focus more on the semantics
of entities and relations, thereby better completing the task of
KGC.

Fig. 2. The comparison of the prediction accuracy rate of the top three
relations corresponding to the number of samples.

(4) Compared to KGE models, PLM-based models have
more advantages in triple classification tasks. This suggests
that incorporating PLMs into KGC models can better deter-
mine the correctness of triples, possibly because such models
use cross-entropy loss functions during training, making them
more proficient in classification tasks. In addition, the results
under the OWA and the CWA in triple classification tasks do
not differ significantly, which may be due to the smaller ratio
of negative triples containing errors obtained through negative
sampling compared to link prediction tasks.

D. Case Study

Table V shows the results of some triple classification pre-
diction cases in the FB15K-237-N dataset. We selected cases
where our model predicted correctly while PKGC (BERT-
base) predicted incorrectly and analyzed them. The label repre-
sents the correctness of the triple, where 1 indicates a positive
triple that exists in the knowledge graph, and 0 indicates a neg-
ative triple obtained through negative sampling. It is apparent
that in the same prediction task, our model outperforms PKGC
(BERT-base) in relations that require comprehensive structural
information, such as the ”/film/film/country” relation.

To further explore the performance of our model on vari-
ous types of relations, we conducted a detailed comparative
analysis experiment on the triple classification task in the
FB15K-237-N dataset. Figure 2 presents the prediction results
of the model on the top three relations with the corresponding
sample numbers of 2622, 1444, and 1328, respectively. The
values in the figure represent the accuracy of the predictions.
It can be observed that our model has more advantages in
resolving complex relation patterns (1-N, N-1, and N-N), such
as ”/people/person/profession” and ”/film/film/genre”.

E. Ablation experiment

Our model incorporates learnable tokens in the data pro-
cessing part. To explore the impact of this component on the
model, we conducted a corresponding ablation experiment.
The input data of the comparison model had the [SPECIAL]
tokens removed. The comparison results are shown in Figure 3.



TABLE III
LINK PREDICTION RESULTS ON WIKI27K AND FB15K-237-N.

Wiki27K FB15K-237-N
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransEa 15.5 3.2 22.8 37.8 25.2 15.2 30.1 45.9
TransCa 17.5 12.4 21.5 33.9 23.3 12.9 29.8 39.5
ConvE a 22.6 16.4 24.4 35.4 27.3 19.2 30.5 42.9
RotatEa 21.6 12.3 25.6 39.4 27.9 17.7 32.0 48.1

KG-BERTa 19.2 11.9 21.9 35.2 20.3 13.9 20.1 40.3
MTL-KGC a 21.7 13.8 23.5 37.9 24.8 15.5 25.6 43.6
StAR (BERT-base) 21.1 13.4 24.0 35.0 24.7 15.8 23.9 40.1
PKGC (BERT-base) 26.2 20.3 28.4 39.5 29.2 21.7 31.8 45.5
SS-KGC (Ours) 26.9 21.0 29.2 40.0 30.1 22.7 32.7 46.3
aThe results are taken from [6]. The best result is in bold.

TABLE IV
TRIPLET CLASSIFICATION RESULTS ON WIKI27K AND FB15K-237-N.

Wiki27K FB15K-237-N
Model ACC F1 ACC F1

TransEa 65.5/64.2 72.3/71.5 66.2/71.5 71.7/70.4
TransCa 68.7/68.4 71.5/71.2 66.4/64.6 71.3/70.8
ConvEa 70.7/68.8 73.5/73.5 67.3/67.3 71.8/73.7
RotatEa 72.3/64.0 75.1/71.3 67.9/63.2 72.3/69.9

KG-BERTa 83.7/82.4 84.3/83.1 71.8/72.7 72.8/73.6
MTL-KGCa 84.3/83.6 85.1/84.4 73.8/74.4 73.0/74.5
PKGC (BERT-base) 87.4/87.1 87.2/86.9 76.5/76.0 76.7/75.8
SS-KGC (Ours) 88.0/88.4 88.2/88.5 77.1/78.1 77.2/78.4
aThe results are taken from [6]. The best result is in bold.

TABLE V
CASES OF TRIPLET CLASSIFICATION UNDER THE FB15K-237-N DATASET.

head entity relation tail entity label
/m/03gfvsz /broadcast/content/artist /m/01k mc 1
/m/0fb7sd /film/film/country /m/09c7w0 1
/m/0cq806 /film/film/language /m/04h9h 1
/m/024lt6 /film/film/film festivals /m/0kfhjq0 1
/m/0kfhjq0 /film/film/genre /m/06nbt 1
/m/04rqd /broadcast/content/artist /m/012z8 0
/m/0cwy47 /film/film/country /m/0cwy47 0
/m/01f6x7 /film/film/language /m/064 8sq 0
/m/0gg5qcw /film/film/film festivals /m/0bmj62v 0
/m/0bth54 /film/film/genre /m/07s9rl0 0

It shows that after removing the learnable tokens, the
model’s performance drops. However, compared to other mod-
els (such as KG-BERT) that use the direct concatenation
of entities and relations, our model still demonstrates very
competitive results. This indicates that the form of the input
data is crucial in exploiting the implicit knowledge of the
PLM. Additionally, experiments demonstrate that the learn-
able tokens can effectively enhance the model’s performance,
enabling the full mining of semantics from the triple text and
better utilization of the implicit knowledge of the PLM.

To explore the impact of structural embeddings on model
performance, we conducted ablation experiments on the triple
classification task and analyzed the results by comparing them.
Figure 4 shows that the model’s performance declines on
the triple classification task without structural embeddings,

Fig. 3. Comparison of ablation experiments on learnable tokens.

Fig. 4. Comparison of ablation experiments on structure embedding.

whether based on the OWA or the CWA, demonstrating the
significant impact of structural information on KGC tasks. It’s
worth noting that our model without KGE still demonstrates
very competitive results compared to other baseline models.

We also found that using CNN in our model yields better
results across all metrics compared to using MLP.

IV. RELATED WORK

A. Pre-trained Language Models

Pre-trained language models (PLMs) are a type of natural
language processing technique based on deep learning, typi-
cally trained on large amounts of unlabeled text data [7], [16].
These models can learn the grammar, semantics, and contex-
tual information in natural language, generating meaningful
language representations. PLMs can be applied to various



natural language processing (NLP) tasks, such as text clas-
sification, named entity recognition, and machine translation,
through fine-tuning or transfer learning. In recent years, PLMs
have become one of the research hotspots in the field of NLP,
achieving many significant experimental results.

B. Knowledge graph completion Models

Knowledge graph completion is one of the important re-
search in the field of knowledge graph [1]. A series of methods
have been proposed for KGC. Among them, methods based
on representation learning have received widespread attention.
It includes KGE models and PLM-based models [15]. These
models aim to learn low-dimensional representations for en-
tities and relations in the knowledge graph, enabling efficient
reasoning and prediction of missing links.

The most classic KGE models are the translation-based
KGE models [3]. They represent each entity and relation
as a low-dimensional vector and then regard the relation as
the distance between the head entity and the tail entity [3],
[4], [17], [18]. These models are popular because of their
simplicity and efficiency.

Compared to translation-based models, semantic matching
models reflect the confidence of the semantic information
of the triple. It includes bilinear models and neural network
models. Bilinear models use a bilinear matrix to measure the
similarity between entities and relations [19], [20], while neu-
ral network models use various neural network architectures
to capture the complex semantics of entities and relations [14],
[21].

PLM-based KGC models are a new emerging method
developed in recent years. The main idea of this model is
to use the PLM to convert the textual descriptions of entities
and relations into vector representations, and then use these
vectors to complete missing entities or relations, such as KG-
BERT [5], MTL-KGC [8], StAR [15], and PKGC [6].

V. CONCLUSION

In this paper, we propose a KGC model that combines text
semantic and structural embedding to improve the performance
of KGC. The model uses BERT to encode text and incor-
porates learnable tokens and relations templates to construct
coherent sentences from triple labels and entity definitions.
Our model also uses multi-head attention to transform the
semantic space of the embeddings of entities and relations
obtained by the KGE model. Finally, the model uses CNN
to extract features from the matrices spliced by two types
of information. Experimental results show that our model
outperforms other baseline models on link prediction and
triplet classification tasks, demonstrating its effectiveness in
capturing both structural and semantic information in KGs.
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