
An Empirical Study on the Impact of Class Overlap
in Just-in-Time Software Defect Prediction

Minyang Yi∗, Guisheng Fan∗�, Huiqun Yu∗‡�, Xingguang Yang∗†
∗Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

†Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai 201112, China
‡Shanghai Engineering Research Center of Smart Energy, Shanghai, China

Abstract—Just-in-time software defect prediction (JIT-SDP) is
an active research topic in the field of software engineering,
aiming at identifying defect-inducing code changes. Most of the
current JIT-SDP work focused on model construction. It is often
ignored that the performance of classifiers often depends on high
quality data. In this paper, we first investigate the impact of
the class overlap problem on the performance of the classifiers
in JIT-SDP, and propose a new effective preprocessing method
(IKMCCA-TL) combining improved K-Means clustering clean-
ing approach and Tomek-link method. In order to objectively
estimate the impact of class overlap on the classifiers in JIT-
SDP, we conduct a large-scale empirical study on the data sets
of six open source projects and compare the performance of LR,
RF and KNN classifiers by using IKMCCA or KMCCA or NCL
and without cleaning data. Experimental results show that after
removing overlapping instances, the performance of the classifiers
is significantly improved in terms of balance, recall and AUC and
our proposed method achieves the best performance.

Index Terms—Just-in-time software defect prediction, class
overlap, K-Means clustering, Tomek-link

I. INTRODUCTION

Software defect prediction technology is one of the most
popular research topics among academic and industrial or-
ganizations [1]. In the development process of large-scale
software, developers cannot avoid software defects. Defects in
the software cause great harm and loss to users, customers and
enterprises. In order to minimize the defects in the software
system, developers will put a lot of effort into testing the
software.

Just-in-time software defect prediction (JIT-SDP) is a spe-
cial software defect prediction (SDP), which is at the soft-
ware change level instead of the module level (for example,
function, file, or class level) and it refers to the technology
that predicts whether there are defects in each code change
submitted by the developer [2]. Once the software change that
caused the defect is implemented, it will be identified in JIT-
SDP.

In SDP, researchers have done a lot of research on class
imbalance and noise cleaning, and they have begun to study
the problem of class overlap. Tang et al. [3] proposed a K-
Means clustering cleanup method to clean noise instances by

Corresponding Authors: Guisheng Fan (gsfan@ecust.edu.cn), Huiqun Yu
(yhq@ecust.edu.cn) DOI reference number: 10.18293/SEKE2021-076

calculating the noise factor value (NFt) of each instance for
each cluster, and deleting the top p%. Chen et al. [4] applied
Neighbor Clean Learning (NCL) rules to remove overlapping
instances for SDP. Gong et al. [5] proposed an improved K-
Means clustering cleanup method (IKMCCA) to solve the
problem of class overlap and class imbalance in SDP.

The main research work in JIT-SDP includes model con-
struction and feature selection. In order to investigate the
impact of the class overlap problem in JIT-SDP, we firstly
uses the NCL, KMCCA and IKMCCA methods to process
the data, and check whether the performance of the three
classifiers is affected. Considering that overlap usually occurs
near the decision boundary and removing important boundary
instances will reduce the learning process, we propose an
effective cleaning approach (IKMCCA-TL) combining IKM-
CCA method and Tomek-link pair method.

The rest of this article is organized as follows. Section II
introduces related work. Section III introduces the proposed
algorithm IKMCCA-TL. Experimental setup is described in
section IV. Experimental results and discussion are presented
in section V. Section VI describes the threats to validity. The
conclusion and future work are presented in section VII.

II. RELATED WORK

A. Just-in-time Software Defect Prediction

The idea of JIT-SDP was proposed by Mockus et al. [6]
and scores of change metrics to predict whether changes are
defect-inducing or clean was designed by them. Kamei et
al. [2] performed a large-scale empirical study in JIT-SDP.
They collected eleven data sets which include six open-source
projects and five commercial projects.

Subsequently, various methods were proposed to improve
the performance of the prediction model for JIT-SDP. Yang
et al. [7] validated the availability of progressive sampling in
the JIT-SDP issue which can reduce the size of the defect
data sets and reduce the cost of data sets acquisition. Chen
et al. [8] proposed a JIT-SDP model MULTI based on multi-
objective optimization algorithm NSGA-II to generate optimal
solutions. The two goals of MULTI optimization are designed
through the benefit-cost analysis. Yang et al. [9] proposed
three optimal solutions selection strategies: benefit priority
(BP), cost priority (CP), and a compromise between cost



and benefit (CCB) to improve the performance of MULTI.
Yang et al. [10] proposed a differential evolution (DE) based
supervised method DEJIT to build JIT-SDP models which can
significantly improve the effort-aware prediction performance
in the three evaluation scenarios.

B. Class overlap

Class overlap means that some instances of different classes
in the training data are close or even overlapped in the
distribution space and often results in poor class boundaries
and affects the performance of the learner. In the current
SDP research, the problem of class overlap is mainly re-
garded as data quality or noise detection. Tang et al. [3]
proposed a cluster-based noise detection method, which uses
the outlier detection method to calculate the noise factor (NF),
and removed the top p% of NF. Chen et al. [4] proposed
Neighborhood Clean Learning (NCL) to solve the problems
of class overlap and class imbalance. The experimental results
show that, compared with the existing learning methods, the
new learning model can obtain the best values in terms of G-
mean and AUC. In order to take into account the effects of
class overlap and class imbalance, Gong et al. [5] proposed
an improved K-Means clustering cleanup method (IKMCCA)
to solve the problem of class overlap and class imbalance
in SDP. Experiments have proved that compared to KMCCA
and NCL methods, the IKMCCA method can obtain the best
performance.

III. IKMCCA-TL

The evaluation model of IKMCCA-TL is shown in Fig 1. In
the following section, we elaborate on the details of IKMCCA-
TL.

Fig. 1. The evaluation model of IKMCCA-TL

A. IKMCCA

In order to consider both the impact of class overlap and
class imbalance at the same time, Gong et al. [5] proposed
an improved K-Means clustering cleanup method (IKMCCA)

to solve the problem of class overlap and class imbalance in
traditional defect prediction. In the step of deleting overlapping
instances in the IKMCCA algorithm, if the percentage of
defective instances in the cluster i is lower than p%, delete
the defective instances in the cluster. On the contrary, instances
without defects in this cluster will be deleted.

B. Tomek-link pair

The Tomek-link undersampling algorithm is used to elim-
inate boundary instances [11] . Given two instances ti ∈ T
and tj ∈ T belonging to different classes, let distance (ti, tj)
be the distance between them. If a pair of instances
(ti, tj) does not exist distance (ti, tl) < distance (ti, tj) or
distance (tl, tj) < distance (ti, tj) for any other instance
tl ∈ T , then this pair of instances is called a Tomek-link
pair.

C. IKMCCA-TL

The overlap often occurs near the decision boundary in the
case of class overlap. In this case, the excessive elimination of
boundary instances will drift the decision boundary between
the minority class and the majority class, which in turn
will reduce the learning process. Therefore, we improve the
IKMCCA algorithm and combines the Tomek-link pair to
make it possible to balance the data distribution, without
distorting the decision boundary, and remove only unimportant
boundary instances and unimportant redundant most instances.
The pseudo code of IKMCCA-TL is shown as Algorithm 1.

IV. EXPERIMENTAL SETUP

In this paper, the problem of class overlap is studied in JIT-
SDP, and the following two research questions are designed.

• RQ1: How does class overlap influence the prediction
performance of the basic classifiers in JIT-SDP?

• RQ2: Why our proposed method (IKMCCA-TL) is more
effective in reducing the impact of class overlap on the
classifiers?

The experimental hardware environment is Intel(R) Core(TM)
i7-10875 CPU@ 2.30GHz; RAM 16.00GB. The experimental
code is written in Python.

A. Data Sets

The experiment considers the data sets of six open source
projects shared by Kamei et al. [2], which have been widely
used in JIT-SDP studies. The data set comes from 6 open
source projects, which is shown in the Table I.

The data sets contains 14 change metrics. These char-
acteristics are briefly introduced in [2], which involve five
dimensions: diffusion, size, purpose, history, and experience.

B. Performance Indicators

In order to explore the influence of class overlap on
the learner, we use three performance measures including
Balance, Recall and AUC.



Algorithm 1: IKMCCA-TL
Input: training set: T , the parameter m.
// m is used to determine the number of clusters
Output: a clean training set: Tnew

1 begin
2 n = the number of instances in T
3 d = the number of defective instances in T
4 p = d/n
5 k = [n/m]
6 using K-means algorithm to divide T into k

clusters
7 for i = 1 → k do
8 find the instance pairs that are the Tomke-link

pairs in cluster i
9 compute the ratio r of of defective instances to

all instances in cluster i
10 if r > p then
11 delete the non-defective instances of the

Tomke-link pairs in cluster i
12 else
13 delete the defective instances of the

Tomke-link pairs in cluster i
14 end
15 Tnew is the set combining the remaining instances

in each cluster
16 end

TABLE I
THE INFORMATION OF DATA SETS

Project Period #defective
changes #changes %defect

rate

BUG 1998/08/26∼2006/12/16 1696 4620 36.71%
COL 2002/11/25∼2006/07/27 1361 4455 30.55%
JDT 2001/05/02∼2007/12/31 5089 35386 14.38%
MOZ 2000/01/01∼2006/12/17 5149 98275 5.24%
PLA 2001/05/02∼2007/12/31 9452 64250 14.71%
POS 1996/07/09∼2010/05/15 5119 20431 25.06%

C. Parameter Setting

In IKMCCA and IKMCCA-TL methods, we set the percent-
age p% to the ratio of defective instances, and the parameter
m is set as 20, which is the same as the references [5]. The
parameter settings of KMCCA and NCL methods are the same
as references [3] and [4]. 85% of the instances are randomly
selected as training data, and rest instances are used as test
data. For eliminating the randomness of the experiment, the
experiment is repeated 20 times.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section answers the questions raised in Section IV
through experiments. And data processing is the same as [2].

A. Analysis for RQ1

In order to test the degree of impact of overlapping in-
stances in software defect data sets on the performance of the

classifiers, we adopt RF, KNN and LR classifiers.
As shown in the table II, through the experimental results,

we can find that after using the NCL method to remove
overlapping instances, the value of Recall increased by 2.9%,
4.6% and 5% respectively on LR, RF and KNN classifiers.
The value of AUC increased by 1%, 1.8% and 2.2% respec-
tively. The value of Bal increased by 1.9%, 3.1% and 3.4%
respectively. KMCCA method which only remove the noise
instances doesn’t achieve much improvement. The IKMCCA
method which solves the problem of class overlap and class
imbalance achieves better performance than the NCL method.

As shown in experimental result, the class overlap problem
will have a serious impact on the performance of the classifier
in JIT-SDP. When the overlapping instances of the class are
removed, the performance of the classifier will be greatly
improved. Considering the problem of class overlap and class
imbalance at the same time, the classifier will perform better.

B. Analysis for RQ2

The existence of important boundary instances is also im-
portant for accurately defining the decision boundary. In the
case of class overlap, the overlap often occurs near the decision
boundary. In this case, the excessive elimination of boundary
instances will drift the decision boundary between the minority
class and the majority class, which in turn will reduce the
learning process. In order to solve the above problems, we
propose IKMCCA-TL method which only removes unimpor-
tant boundary instances and unimportant redundant instances.
Compared with the IKMCCA method, the Recall value of the
IKMCCA-TL method is increased by 5.5%, 5.4% and 5.4%
respectively on LR, RF and KNN classifiers. The value of
AUC is increased by 0.7%, 0.8% and 0.6% respectively. The
value of bal is increased by 1.9%, 2.5% and 1.4% respectively.

As shown in experimental result, when we only delete unim-
portant overlap instances of the decision boundary instances,
the performance of classifiers can be better.

VI. THREATS TO VALIDITY

External validity. The results of the experiment can’t be
guaranteed to apply to all other defect data sets. More data sets
should be mined to verify the generalization of experimental
results.

Construct validity. Three indicators, including Recall,
AUC and bal, are used to reflect the performance of the
classifier, which is also widely used in [5].

Internal validity. The threats to internal validity are mainly
from experimental code. The mature python libraries are used
and the code is checked to reduce the errors.

VII. CONCLUSIONS AND FUTURE WORK

In JIT-SDP, the performance of the classifier often depends
on high-quality data. In the past, the impact of overlapping
classes on learning models was ignored. Therefore, we propose
a method IKMCCA-TL that can better remove unimportant
boundary instances and unimportant redundant instances, and



TABLE II
EXPERIMENTAL RESULTS OF THE ABOVE METHODS ON THE CLASSIFIERS LR, RF, KNN

project method Logistic regression Random forests K-nearest neighbor
Recall AUC Bal Recall AUC Bal Recall AUC Bal

BUG

Without removing 0.408 0.634 0.569 0.408 0.679 0.625 0.448 0.615 0.579
NCL 0.458 0.652 0.561 0.553 0.700 0.666 0.523 0.650 0.627

KMCCA 0.394 0.631 0.636 0.490 0.677 0.626 0.458 0.620 0.586
IKMCCA 0.495 0.646 0.612 0.583 0.680 0.665 0.546 0.623 0.613

IKMCCA-TL 0.676 0.658 0.656 0.697 0.692 0.689 0.685 0.630 0.624

COL

Without removing 0.334 0.6284 0.526 0.387 0.639 0.560 0.364 0.603 0.536
NCL 0.399 0.649 0.569 0.450 0.666 0.602 0.435 0.634 0.583

KMCCA 0.361 0.635 0.543 0.405 0.643 0.570 0.372 0.604 0.540
IKMCCA 0.489 0.662 0.619 0.517 0.661 0.630 0.501 0.621 0.601

IKMCCA-TL 0.592 0.674 0.662 0.634 0.678 0.674 0.601 0.629 0.627

JDT

Without removing 0.041 0.516 0.322 0.098 0.541 0.362 0.128 0.546 0.382
NCL 0.059 0.524 0.335 0.149 0.564 0.398 0.177 0.566 0.417

KMCCA 0.045 0.518 0.324 0.100 0.542 0.363 0.131 0.548 0.385
IKMCCA 0.152 0.559 0.400 0.274 0.605 0.484 0.298 0.594 0.498

IKMCCA-TL 0.156 0.561 0.403 0.283 0.607 0.490 0.316 0.599 0.509

MOZ

Without removing 0.029 0.514 0.314 0.054 0.526 0.331 0.080 0.536 0.349
NCL 0.031 0.515 0.315 0.065 0.531 0.339 0.098 0.544 0.362

KMCCA 0.031 0.515 0.315 0.055 0.526 0.332 0.082 0.537 0.350
IKMCCA 0.059 0.527 0.334 0.130 0.560 0.358 0.163 0.570 0.408

IKMCCA-TL 0.061 0.528 0.336 0.134 0.562 0.387 0.167 0.572 0.411

PLA

Without removing 0.079 0.535 0.349 0.162 0.571 0.407 0.145 0.553 0.395
NCL 0.092 0.540 0.358 0.202 0.589 0.435 0.205 0.579 0.437

KMCCA 0.081 0.535 0.350 0.152 0.567 0.401 0.146 0.553 0.395
IKMCCA 0.223 0.590 0.449 0.336 0.633 0.528 0.325 0.603 0.515

IKMCCA-TL 0.225 0.591 0.451 0.355 0.639 0.541 0.338 0.605 0.523

POS

Without removing 0.339 0.641 0.530 0.391 0.662 0.567 0.369 0.633 0.548
NCL 0.363 0.650 0.547 0.435 0.678 0.597 0.400 0.644 0.568

KMCCA 0.326 0.636 0.522 0.392 0.663 0.567 0.377 0.637 0.553
IKMCCA 0.493 0.685 0.631 0.536 0.700 0.658 0.512 0.664 0.631

IKMCCA-TL 0.532 0.693 0.653 0.594 0.712 0.689 0.565 0.669 0.653

Average

Without removing 0.205 0.578 0.435 0.263 0.603 0.475 0.256 0.581 0.465
NCL 0.234 0.588 0.454 0.309 0.621 0.506 0.306 0.603 0.499

KMCCA 0.206 0.579 0.436 0.265 0.603 0.477 0.261 0.583 0.468
IKMCCA 0.318 0.611 0.508 0.396 0.640 0.554 0.391 0.612 0.544

IKMCCA-TL 0.373 0.618 0.527 0.450 0.648 0.579 0.445 0.618 0.558

investigate whether NCL, KMCCA, IKMCCA and IKMCCA-
TL methods can improve the performance of the classifiers.
We conduct a large-scale empirical study on data sets of six
open source projects. Experimental results show that using
these methods to eliminate overlapping instances can achieve
significantly better performance in terms of bal, Recall, and
AUC. And our proposed method IKMCCA-TL can better
improve the performance of the classifiers by eliminating class
overlapping instances.

In the future, more data sets from commercial projects will
be mined to verify the generalization of experimental results.

ACKNOWLEDGMENT

This work was partially supported by the National Natural
Science Foundation of China under Grant nos. 61702334 and
61772200, Shanghai Municipal Natural Science Foundation
under Grant nos. 17ZR1406900 and 17ZR1429700.

REFERENCES

[1] X. Chen, Q. Gu, W. Liu, S. Liu, C. Ni, Survey of static software defect
prediction, Journal of Software, 27 (1) (2016).

[2] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
N. Ubayashi, A large-scale empirical study of just-in-time quality
assurance, IEEE Transactions on Software Engineering, 39 (6) (2013)
:757–773.

[3] W. Tang, T. M, Khoshgoftaar, Noise identification with the k-means
algorithm, in: Proceedings of the 16th International Conference on Tools
with Artificial Intelligence, ICTAI, 2004, 2004, pp. 373–378.

[4] L. Chen, B. Fang, Z. Shang, Y. Tang, Tackling class overlap and
imbalance problems in software defect prediction, Software Quality
Journal, 26 (1) (2018) :97–125.

[5] L. Gong, S. Jiang, R. Wang, L. Jiang, Empirical evaluation of the impact
of class overlap on software defect prediction, in: Proceedings of the
34th International Conference on Automated Software Engineering, ASE
2019, 2019, pp. 698–709.

[6] A. Mockus, D. M. Weiss, Predicting risk of software changes, Bell Labs
Technical Journal, 5 (2) (2000) :169–180.

[7] X. Yang, H. Yu, G. Fan, K. Yang, K. Shi, An empirical study on
progressive sampling for just-in-time software defect prediction, in:
Proceedings of the 26th Asia-Pacific Software Engineering Conference,
APSEC, 2019, 2019, pp. 12–18.

[8] X. Chen, Y. Zhao, Q. Wang, Z. Yuan, MULTI: multi-objective effort-
aware just-in-time software defect prediction, Information & Software
Technology, 93 (2018) :1–13.

[9] X. Yang, H. Yu, G. Fan, K. Yang, An empirical study on optimal
solutions selection strategies for effort-aware just-in-time software defect
prediction, in: Proceedings of the 31st International Conference on
Software Engineering and Knowledge Engineering, SEKE, 2019, 2019,
pp. 319–324.

[10] X. Yang, H. Yu, G. Fan, K. Yang, Dejit: A differential evolution
algorithm for effort-aware just-in-time software defect prediction, In-
ternational Journal of Software Engineering, 31 (3) (2021) :289–310.

[11] T. I, Two modifications of CNN, IEEE Transactions on Systems, Man,
and Cybernetics, 7 (2) (1976) :769–772.


