Leveraging Compiler Optimization for Code Clone
Detection

Shirish Singh
Dept. of Computer Science
Columbia University, USA

shirish@cs.columbia.edu

Abstract—Finding similar code in software systems can guide
several software engineering tasks such as code maintenance, pro-
gram understanding, and code reuse. Similar code detection has
been actively studied in the past. In the paper, we propose a novel
approach that leverages compiler optimizations to transform
semantically similar code and detect similar programs. The key
observation of our work is that the compiler optimizations can be
used to smooth out source code level idiosyncrasies introduced by
the developers, thus making the optimized programs, for the same

task, similar in structure. The similarity in structure can then be °
used to classify the programs. We conducted experiments on the -
Google CodeJam dataset to demonstrate the effectiveness of our _

Harshit Singhal
Dept. of Computer Science & Engineering
The LNMIIT, India
18ucc159 @Inmiit.ac.in

Bharavi Mishra
Dept. of Computer Science & Engineering
The LNMIIT, India
bharavi @Inmiit.ac.in

through Ghidra, we observe that the resultant code is the same,
shown in code snippet 3.

int main(int numl, int num2) {
return numl * num2;

3}

approach. The experimental results show that our technique can

achieve up to 85% accuracy on the program classification task, .

which is an improvement of more than 25% over the source code
level classification.

Index Terms—code clones, compiler optimization, reverse-
engineering, code representation

I. INTRODUCTION

Code clone detection is an important problem for software
maintenance and evolution. Several approaches have been
studied for clone detection, which can be subdivided into two
broad categories: a) Static analysis: extraction information
from the code content [1] and b) Dynamic analysis: clone de-
tection based run-time program behavior. [2]. Applications of
code clone detection are manifold, such as code maintenance,
program understanding, malware detection, and code reuse.
In this work, we rely on compiler optimizations to classify
the semantically similar programs. Compiler optimization is a
sequence of transformations performed by the compiler on a
program to produce a semantically equivalent binary that uses
fewer system resources for its execution. Our study’s main
idea relies on the hypothesis that the compiler optimizations
can be used to remove any source code level idiosyncrasies
introduced by the developers, thus making the optimized code,
for the same task, structurally similar. This similarity can then
be used to classify the programs.

A. Motivating Example

Code snippet 1 and 2 represent the multiplication function-
ality using two different methods: simple multiplication and
multiplication by addition. After compiling the snippets with
O3 compiler optimization and then decompiling the binaries

DOI reference number: 10.18293/SEKE2021-032

Snippet 1: Simple Multiplication

int main(int numl, int num2) {
int multiplication = 0;
for(int i = 0; i < num2;
multiplication += numl;
}

return multiplication;

i++) {

Snippet 2: Multiplication via repeated addition

I ulong main (int param_1,int param_2) {

3}

return (ulong) (uint) (param_1 x param_2);

Snippet 3: Ghidra Decompiled Code

As seen in the above code snippets, the main idea be-
hind our study relies on the key observation that the com-
piler transforms the code for optimized performance, and
two semantically similar codes can yield very similar (often
overlapping) optimized binaries. Hence, we leverage these
compiler optimizations to reduce the differences in the source
code introduced by the developers. Figure 1 depicts the key
idea of our work. Two semantically similar developer-written
programs can have a large distance (/\;) when represented
as vectors. After compiling (with optimizations) and then
decompiling, we observe that the effective distance between
the decompiled programs (As) reduces significantly to deem
them similar. The net change (A; — A\s) in the distances
between the original programs and the decompiled programs
results in significant improvements in the clone detection task.

B. Contributions

In this paper, we answer three research questions:

« RQ1: Can compiler optimization be used to smooth out
code level differences introduced by the developer?

¢ RQ2: Can the compiler optimized code be used to detect
similarity? If yes, then which optimizations are optimal?

e RQ3: Can cross-optimization detect similar code?

The primary contributions of this paper are three-fold:

\
; ’
equivalent programs])
v T _adl)
5 . e
'''''' \
.................................... N P
Source S
Code
s mmmmm-E- s mmm———-
Compiler . !
1 S 1 Decompiler 1
1 Optimization f
1 1
cemm e ——-—- _— - = -
A ‘ /i .
A \ ’, ’
\ \ ’ 4
\ \ 7 rd
4 7’
\\ ,\\— PSS -
i £ = 4]
Binary 1 - § 2 -
- pEE]
aalP -
-7 "'\—g’ .
' -
Binary R Binary 2

Fig. 1: A; represents the distance between the vector
representations of two semantically similar source code. A
represents the distance between the vector representations
of the decompiled binaries of the source code.

« We present a novel technique for code clone based on
compiler optimizations. Our approach can also be adapted
to detect similar binaries without source code availability.

o We study the impact of different compiler optimization
levels on code clone detection. We also perform experi-
ments to investigate the impact of cross-optimization on
clone detection.

We conducted experiments on the Google Code Jam dataset
from 2008 to demonstrate the effectiveness of our proposed
approach. The experimental results show that our technique
can achieve accuracy up to 85% on the classification task. We
also study the effectiveness of cross compiler optimizations on
the classification task. To the best of our knowledge, this is the
first work exploring compiler optimized decompiled code for
code clone detection tasks at the source code level. Our work
is a general framework that can be adapted to solve other
challenges such as malware detection, plagiarism detection,
etc.

The remainder of the paper is organized as follows: Section
IT explains the background on code clones, compiler optimiza-
tions, and code embedding. Section III discusses the data-set
used in our study. Section IV describes the proposed frame-
work. Section V presents the results of our study, followed
by a discussion section and a section on related work. Section
VIII discusses the limitations of our work. Finally, section IX
discusses the conclusion and future work.

II. BACKGROUND

In this section, we discuss code clones, compiler optimiza-
tions, Ghidra, and code representation through code2vec.

1) Code Clones: Code clones are similar pieces/fragments
of code that are either syntactically or behaviorally similar.
In practice, programmers often use clones via copy/paste to
support rapid software development. For a given code snippet,

there can be several types of clones. Four types of code clones
have been widely studied in literature [3], [4]: Type-1 (textual
similarity), Type-2 (Iexical, or token-based, similarity), Type-3
(syntactic similarity), and Type-4 (semantic similarity).

2) GCC Compiler Optimizations: GNU Compiler Collec-
tion (GCC) is the GNU compiler project which supports
several high-level languages, such as C and C++. One core
function of the compiler is to optimize the code for per-
formance. Code optimization has several benefits; it allows
reduced resource consumption, resulting in faster running
machine code and lesser memory usage. The optimization
is performed by doing transformations (optimizations) that
can only be done at the assembly (machine) level for the
target hardware. The GCC optimizer supports six pre-defined
optimization levels: -O1, -02, -O3, -Ofast, -Og, and -Os [5].
In this work, we utilize -O1, -O2, -O3 optimization levels.

3) Ghidra: Ghidra is a free, open-source reverse engineer-
ing tool developed by National Security Agency (NSA) [6].
It is a comprehensive and expandable framework covering
the complete workflow of binary analysis. Ghidra is often
used for the decompilation of executable binaries, and in this
study, we use Ghidra’s command-line analysis tool to reverse-
engineer the decompiled code of compiler optimized C/C++
code binaries.

4) Code2vec: Code2vec [7] is a neural network architecture
based on attention architecture for representing snippets of
code as continuous distributed vectors or code embeddings.
Originally trained on Java, Code2vec converts the source code
into a set of paths using the code’s underlying Abstract Syntax
Tree (AST) and learns how to combine these paths using an
attention mechanism. Code2vec then represents each function
as a fixed-length code vector which is used to represent the dif-
ferent features of that function. Method embeddings generated
by code2vec serve as a base for a large variety of applications
and analyses such as author attribution, bug detection, and so
on. It has been shown that the generated embeddings can be
aggregated using several aggregation methods such as max,
min, sum, mean, median, and standard deviation to obtain
embeddings at a file-level [8]. We utilize median aggregation
method to represent each program.

IIT. DATASET

Code Embedding Dataset: Since the original code2vec
model is trained on Java language, we trained a new code2vec
model on C and C++ programs from top 1000 Github reposi-
tories. Because of memory limitations, we excluded the Linux
repository.

Experiment Dataset: Google CodeJam (GCJ) is a yearly
programming competition hosted by Google. In our study
we used GCJ dataset from 2008 [9] provided on Github
[10]. The competition has several rounds, each containing
several problems to be solved by the participants worldwide.
The diverse characteristics of the participant pool introduces
diversity in the submissions for any given programming task.
Participants are allowed to submit their programs in any
language of their choice. In this study, however, we only

consider C and C++ programs because of compiler restrictions.
The GCJ dataset can be further sub-divided into two types of
programs: accepted solutions and non-accepted submissions.
In this study, because of ground truth availability, we only
use the accepted solutions. In our study, the submissions
from 2008 GCJ were used to extract the code embedding,
train, and test the classifiers. The 2008 data contained 8,524
solutions written in C/C++ with disproportionate distribution
across different problems. For consistency, we consider six
programming tasks with about 200 randomly sampled submis-
sions. The total size of the dataset was 1,423. We further split
the data into training and test set, containing 1,280 and 143
submissions, respectively. The programs were then compiled
with three different optimization levels (see section II-4) and
then decompiled using Ghidra [6] (see section II-3).

IV. SYSTEM OVERVIEW

Our approach involves four steps: a) Code compilation
using compiler optimizations, b) Code decompilation, ¢) Gen-
eration of code embedding, and d) Classifying the embedding
in to clusters of similar code. Figure 2 shows the high level
overview of our pipeline. Given a C/C++ program, we first
compile the binary using one of the optimization flags to
generate a binary executable. Then we use Ghidra to reverse
engineer the binary to retrieve the source code. The generated
source code is then fed to the code2vec model to retrieve the
code embedding for the program. The embedding is used to
train a model to classify the programs. In this section, we
discuss all the steps in further detail.

1
Lk : (Gee @ Compile _
C/C++ f Compiler ==
[)

Source
Code

Decompl\e

C/C+

\
]
]
1
]
]

! Compiler
! Optimizations

Optimized

Decompiled :
Executable

e
1
'
'
'
'
\ Source Code ,

]
!

Generate

= Embeddings
<>

Code
Embeddings

Code2vec
Model

Fig. 2:
A. Compiling Binaries

An overview of our system

We use the GCC compiler to generate the GSJ dataset’s
source programs’ binaries in the first step. For every program,
we generate three binaries corresponding to three optimization
levels: O1, O2, and O3. These binaries are then decompiled
using Ghidra reverse-engineering tool to get the source code.
All binaries were compiled for x64 architecture.

B. Ghidra for decompilation

Our study uses Ghidra’s command-line analysis tool to
reverse-engineer the decompiled version of compiler opti-
mized C/C++ code binaries. The study uses command-line
analysis, also known as headless-analysis, since work requires
several files to decompile at once, so it is feasible to use
command-line analysis. We first import all binaries and then

perform analysis to decompile them. The decompiled code is
saved in separate files to generate code vector representations.

C. Code Embedding

The main component of getting code vectors from code2vec
is path extraction. Code2vec first constructs the AST (Abstract
Syntax Tree). Then the syntactic path between AST leaves are
extracted, which form the path-context. Each path and leaf-
values of a path-context is mapped to its corresponding real-
valued vector representation, or its embedding. Then, the three
vectors of each context are concatenated to a single vector that
represents that path-context.

It is important to note that code2vec generated code embed-
ding for methods as opposed to programs or files. Since we
wanted to study program level similarity rather than function
level similarity, we had to generate a single code embedding
for a single file that might contain multiple functions. As
shown in prior research [8], we can get the file level em-
bedding by aggregating the set of method level embedding.
The aggregation method is applied column-wise. The base
aggregation functions used are max, min, mean and median. A
combination of aggregation methods can also be considered. In
our study, median aggregation worked best, so we constructed
the program level embedding using median aggregation.

1) Model Training: Since the base code2vec model is
trained on Java language, we trained a new code2vec model
on C and C++ programs from top 1000 Github reposito-
ries. Code2vec model generation is a two-step process: pre-
processing and model training. For pre-processing step, we
used the pre-processing script provided by code2vec_c [11].
We set the maximum leaf node to be processed in the
given method to 320. We pre-processed all C programs in
the repositories; however, some files that did not match the
maximum leaf node size training criteria were removed. The
remaining 1.2 million programs were then used to train the
code2vec model. The model was trained for 40 epochs.

2) Feature Vector Extraction: For getting the code embed-
ding for the classification task, we used the newly trained
code2vec model. We captured code-vector corresponding to
each function in the program. Since we wanted to study
program level similarity rather than function level similarity,
we had to generate a single code embedding for a single file
that might contain multiple functions. To generate one vector
to represent a given program, we used median aggregation
function following prior research [8], which showed that we
can get the file/program level embedding by aggregating the
set of method level embedding. These program level embed-
ding were then used to train and test the classification models.

V. EVALUATION AND RESULTS
A. Experimental Setting

We use five off-the-shelf machine learning algorithms and
one customized DNN to train our models and demonstrate
the effectiveness of the proposed work. We trained five off-
the-shelf machine learning algorithms for classification tasks:
Random Forest (RF), K-Nearest Neighbour (KNN), Support

Models
Optimizaion RF KNN LR DT SVM DNN
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Source 53.14% | 52.00% | 49.65% | 50.71% | 56.64% | 56.68% | 39.86% | 42.03% | 51.04% 51.35% | 58.74% | 59.08%
o1 76.22% | 76.95% | 72.02% | 71.56% | 83.21% | 83.43% | 64.33% | 64.47% | 83.21% 83.30% | 83.21% | 83.34%
02 78.32% | 78.56% | 76.22% | 76.49% | 84.61% | 84.85% | 54.54% | 55.45% | 84.61% | 84.96% 83.21% 83.29%
03 74.12% | 74.03% | 69.23% | 69.90% | 79.72% | 79.36% | 66.43% | 65.67% | 83.91% | 83.77% 83.21% 81.43%
01,02,03 76.22% | 76.93% | 71.32% | 71.12% | 86.01% | 86.13% | 59.44% | 61.90% | 86.71% | 87.07% 86.01% 84.94%

TABLE I: Performance comparison table shows the accuracy and F1-score achieved by each model.

Vector Machines (SVM), Logistic Regression (LR), and De-
cision Tree (DT). We also trained a DNN. The DNN consists
of an input layer (containing 384 neurons corresponding to
the 384 code2vec features), one hidden layer (384 neurons
and ReLu activation), and a softmax output layer (6 classes
corresponding to 6 programming tasks).

We ran our training and testing scripts on a Dell XPS
8930, with Intel i5-9600K 6-core 64GB RAM, running Ubuntu
18.04 and Python 3.7.3. To evaluate the performance of the
model, we use four metrics, namely, accuracy, precision, recall,
and Fl-score. Because of space limitations, we only report
accuracy and Fl-score.

B. Code Classification

We selected six programming tasks from the 2008 Google
Code Jam dataset, each having about 200 data points. The
dataset’s total size was 1,423 programs, which was split into
training and test set containing 1,280 and 143 programs,
respectively. We then extracted code vectors corresponding to
each program and aggregated the vectors to get a program-
level representation. The process was repeated for decompiled
code for different optimization levels O1, 02, O3. Ultimately,
we compiled four embedding datasets for the classification
task: original programs, O1 optimized, O2 optimized, and O3
optimized programs. In addition to the four datasets, we also
merged all the optimized program embeddings (O1, O2, and
03) to test the performance of the models.

Comparision Between Different Algorithm

100 B Random Forest
B KNN

Logistic Regression

75
B Decision Tree

| svm
50 DN

25

Source o1 az 03 01,02,03

Code Type

Fig. 3: Performance comparison chart compares the accu-
racy of each model on the optimization datasets.

We trained the models on the code vector representation of
the programs. Since we had six different classes of programs in
the dataset, we trained multi-class classifiers. Table I summa-
rizes the results of the models. We observe the classification
accuracy is highest in the models trained on O2 optimized
programs. Furthermore, it can be seen that using the best

models, the classifier can correctly classify up to 84.61%
of the decompiled programs vs. only 58.74% of the source
code. We also observe that DNN and SVM models perform
similarly. The models collectively trained on O1, O2, and
O3 optimizations outperform other models trained on single
optimizations, with significant margins.

Figure 3 summarizes the accuracy of all the models. We
can observe that the accuracy is sub-optimal in the case of the
developer written program (depicted as ‘Source’); however,
the accuracy significantly increases if we apply a compiler
optimization. This increase in the accuracy is owed to the
transformations performed by the compiler on the source pro-
gram, which results in similar binaries being constructed from
semantically similar programs written by different developers.

Test Set
Source Ol 02 03
< Source | 51.04% | 11.88% | 11.88% | 11.88%
2 0] 2237% | 8321% | 65.03% | 60.13%
§ 02 1538% | 72.72% | 84.61% | 68.53%
E 03 18.88% | 68.53% | 74.82% | 83.91%

TABLE II: Performance of cross optimizations (Accuracy)

We also conducted an experiment to study the impact of
cross-compiler optimization on the classification task. We
trained one SVM model on each dataset and evaluated the
models by testing on other datasets. Table II summarizes the
results of the experiment in terms of accuracy. It can be
observed that the models perform the best when tested on the
same set of data it was trained on. This observation implies
that the compiler transformations, under different optimization
levels, produce binaries that are somewhat different from
each other such that the code embedding cannot capture
the similarities. Moreover, we see a unique pattern in the
performance of the models trained on Ol and O3 optimized
programs. For the model trained on Ol optimization, we see
that the performance of the model is better on O2 dataset as
compared with O3. Similarly, the performance of the model
trained on O3 optimization is better on O2 as compared to O1.
This pattern suggests some similarities between close levels
of optimizations. The model trained on the original source
programs exhibits the same pattern. As we move away from
the original program, from O1 to O2 to O3, we observe a
degradation of performance.

Figure 4 depicts the t-SNE plots of the code embedding for
each dataset. It can be observed that source code is harder to
separate, but compiler-optimized decompiled program repre-
sentation shows significant improvement and allows the data
points to separate. The level of separation increases as we
increase the optimization level from Ol to O2. However, the
separation decreases slightly in O3.

Source Code (TSNE) Decomplied 01 (TSNE)

Decomplied 02 (TSNE) Decomplied 03 (TSNE)

(2
» %

W
»

*,
é%?

: o
5 e

i

i

v -
.

| S8 j@'

T T E)) E)
omponentt omponent

(a) Source Code (b) Decompiled O1

(c) Decompiled O2 (d) Decompiled O3

Fig. 4: t-SNE of code vectors for different optimization levels. Different colors represent different problems of the GCJ
dataset. We can observe that optimization O2 segregates the data with a clear distinction between the clusters.

VI. DISCUSSION

RQ1: Can compiler optimization be used to smooth out
source code level differences introduced by the developer?

Through the code classification study, we observed that
compiler optimized code has significantly higher accuracy
when compared to the original developer written source code.
Since the code2vec representation relies on the AST of a given
method, the compiler optimizations transform semantically
similar high-level developer written code to programs with
similarly structured ASTs. We also observed in the motivating
example, that two semantically similar code snippets can often
result in similar binary.

RQ1: We observe that it is possible to smooth out source
code level differences by using compiler optimizations.
In particular, optimization techniques can transform, two
separate but similar code snippets, to produce similar output.

RQ2: Can the compiler optimized code be used to detect
similarity? If yes, then which optimizations are optimal?

Through the experiments, we demonstrated that the clas-
sifier trained on compiler optimized programs embedding
can out perform classifier training on the original source
code embedding. In our study, we also observed that O2
optimization performs the best among all optimizations. We
hypothesize that this phenomenon occurs because several O3
optimization flags transforms the loops of the program, thereby
changing the AST of the method, which in turn impacts the
code vector embedding of code2vec model.

RQ2: We show that the compiler optimization O2 performs
optimal transformations for the classification task.

RQ3: Can cross-optimization detect similar code?

We performed a study to learn about the impact of different
optimizations on each other. We trained a DNN model on
each optimization level and tested against the other opti-
mizations. Table II summarizes the performance on cross
compiler optimizations. We observe that each model learns to
classify the programs with the same optimization they were
trained upon. However, the models fail to adopt and perform
sub-optimally on other optimizations. This outcome can be

partially be attributed to vector embedding used to represent
the code. We hypothesize that using a more comprehensive
code representation can lead to improvement in classification
task on cross compiler optimization (see section VIII).

RQ3: Cross compiler optimizations are not effective in
detecting similar code.

VII. RELATED WORK

Code similarity has been extensively studied in literature
[12], particularly type-4 (semantically similar) code clones.
Through a user study, researchers showed that functionally
similar code exists in practice [13]. While static token based
approaches such as SourcererCC[14] and CCFinder[15] have
been studied, advances in computing has paved the path for
two other approaches to code clone detection. We first outline
machine learning approaches based on static features of the
code, followed by dynamic approaches.

A. ML for Code Clone Detection

Deep learning has also been applied for detecting code
clones [16], [17], [18], [19]. Researchers used both struc-
ture or identifiers to detect all four types of code clones
[16]. Their technique relied on a novel code representation
scheme: the terms in code fragments were mapped to vector
representations such that terms used in similar ways map to
similar vectors. Then the model learns discriminating features
for code fragments at different levels of granularity. DeepSim
is another approach that measures code functional similarity
[17] by encoding control flow and data flow graphs into a
semantic matrix. Another similar approach, HOLMES [18]
(that relies on CFG and DFG), performs semantic code clone
detection using program dependency graphs and graph neural
networks by leveraging the structured, syntactic, and semantic
information of the source code. FCCA [19] uses hybrid code
representation by combining unstructured (code as sequential
tokens) and structured (ASTs and CFGs) information of the
code. Authors then train a deep-learning model with attention.
Asm2vec [20] is a binary clone detection system that uses
vector representation of assembly functions to detect clones.

B. Dynamic Analysis for Code Clone Detection

Tajima et al. [21] proposed to detect functionally similar
code for newly created methods that do not have test cases.
Authors first extract interface information and PDG from
methods. Then this information is used for similarity detection.
Li et al. [22] proposed a technique based on automatic test case
generation to search semantically equivalent API methods by
running the generated test cases. They consider two methods to
be similar if the methods generate the same output on each of
the generated test cases. Mathew et al. [2] proposed SLACC,
a cross-language clone detection based on runtime behavior. It
uses function I/O to cluster code based on its behavior. Authors
generate 256 inputs per function to find similarity. Compared
to dynamic techniques, our work is lightweight since we do
not need to run the programs.

VIII. THREATS AND LIMITATIONS

Our approach relies on Code2vec embedding that utilizes
ASTs of the program to generate the vector representation.
For Type-I (textual similarity), Type-II (lexical similarity),
and Type-III (syntactic similarity) clones, code2vec produces
significantly similar ASTs because of similarity in syntactic
structure. However, Type-IV code clones are only behaviorally
similar; they have different syntactic structures. Hence, the
underlying ASTs of Type-IV clones are significantly different,
leading to different code2vec vector representation. Moreover,
code2vec has been shown to rely heavily on variable names
for prediction, causing it to be fooled by typos or adversarial
attacks [8]. Our code2vec model was trained on the source
code, and using an obfuscated version of the training data
can potentially improve the performance. Moreover, there are
several techniques in the literature to generate code embedding
that utilize call graphs, ASTs, and other data from the code
[23]. In this work, our framework relies on code2vec embed-
ding. It is possible that other representations, such as Asm2vec
[20], yield better results. We leave this to future work.

IX. CONCLUSION

In this paper, we propose compiler optimization based code
clone detection technique. Our approach relies on the compiler
to smooth out the differences in the source code introduced
by the developer. We observed that O2 optimization yields the
best performance (84.61% accuracy and 84.96% F1-score) for
the classification task among O1, O2, and O3. Our proposed
approach yields an improvement of more than 25% accuracy
over the source code based representation. Furthermore, we
investigated the utility of cross compiler optimization for
classification problem. Our results suggest that the optimiza-
tions yield significantly different binaries making it difficult
for the model to learn optimally. In the future, we plan to
study program representation to accommodate cross compiler
optimization and improve classification performance.

REFERENCES

[1] E. O. Kiyak, A. B. Cengiz, K. U. Birant, and D. Birant, “Comparison
of image-based and text-based source code classification using deep
learning,” SN Computer Science, vol. 1, no. 5, pp. 1-13, 2020.

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

G. Mathew, C. Parnin, and K. T. Stolee, “SLACC: Simion-Based
Language Agnostic Code Clones,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ser. ICSE °20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
210-221. [Online]. Available: https://doi.org/10.1145/3377811.3380407
S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Compar-
ison and Evaluation of Clone Detection Tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577-591, 2007.

C. K. Roy and J. R. Cordy, “A Survey on Software Clone Detection
Research,” School of Computing TR 2007-541, Queen’s University, vol.
115, 2007.

GCC, “Optimize options (using the gnu compiler collection (gcc)),”
https://gcc.gnu.org/onlinedocs/gec/Optimize-Options.html, (Accessed on
03/05/2021).

NSA, “Ghidra,” https://ghidrasre.org/, (Accessed on 03/06/2021).

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2Vec: Learning
Distributed Representations of Code,” Proc. ACM Program. Lang.,
vol. 3, no. POPL, pp. 40:1-40:29, Jan. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3290353

R. Compton, E. Frank, P. Patros, and A. Koay, Embedding Java Classes
with Code2vec: Improvements from Variable Obfuscation. New York,
NY, USA: Association for Computing Machinery, 2020, p. 243-253.
[Online]. Available: https://doi.org/10.1145/3379597.3387445

Google, “Code jam - google’s coding competitions,”
https://codingcompetitions.withgoogle.com/codejam, (Accessed on
03/05/2021).

J. Petrik, “Jurlcek/gcj-dataset: Collected solutions from google code jam
programming competition (2008-2020).” https://github.com/Jurlcek/gcj-
dataset, (Accessed on 03/08/2021).

A. H. Ali, “code2vec_c,” https://github.com/AmeerHajAli/code2vec_c,
(Accessed on 03/14/2021).

A. Walker, T. Cerny, and E. Song, “Open-source tools and benchmarks
for code-clone detection: Past, present, and future trends,” SIGAPP
Appl. Comput. Rev., vol. 19, no. 4, p. 28-39, Jan. 2020. [Online].
Available: https://doi.org/10.1145/3381307.3381310

V. Kifer, S. Wagner, and R. Koschke, “Are there functionally similar
code clones in practice?” in 2018 IEEE 12th International Workshop on
Software Clones (IWSC), 2018, pp. 2-8.

H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-
ercc: Scaling code clone detection to big-code,” in 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), 2016,
pp. 1157-1168.

T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654-670,
2002.

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2016, pp. 87-98.

G. Zhao and J. Huang, “DeepSim: Deep Learning Code Functional
Similarity,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: Association for Computing Machinery, 2018, p.
141-151. [Online]. Available: https://doi.org/10.1145/3236024.3236068
N. Mehrotra, N. Agarwal, P. Gupta, S. Anand, D. Lo, and R. Purandare,
“Modeling Functional Similarity in Source Code with Graph-Based
Siamese Networks,” arXiv preprint arXiv:2011.11228, 2020.

W. Hua, Y. Sui, Y. Wan, G. Liu, and G. Xu, “FCCA: Hybrid Code Rep-
resentation for Functional Clone Detection Using Attention Networks,”
IEEE Transactions on Reliability, pp. 1-15, 2020.

S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2vec: Boosting
static representation robustness for binary clone search against code
obfuscation and compiler optimization,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019, pp. 472-489.

R. Tajima, M. Nagura, and S. Takada, “Detecting functionally similar
code within the same project,” in 2018 IEEE 12th International Work-
shop on Software Clones (IWSC), 2018, pp. 51-57.

G. Li, H. Liu, Y. Jiang, and J. Jin, “Test-Based Clone Detection: an
Initial Try on Semantically Equivalent Methods,” IEEE Access, vol. 6,
pp. 77643-77 655, 2018.

Z. Chen and M. Monperrus, “A literature study of embeddings on source
code,” arXiv preprint arXiv:1904.03061, 2019.

