
An Integrated Software Vulnerability Discovery
Model based on Artificial Neural Network

Gul Jabeen⇤, Junaid Akram⇤, Luo Ping⇤, Akber Aman Shah†
⇤State Key Laboratory of Information Security, School of Software Engineering, Tsinghua University China.

Email: [jgl14,znd15]@mails.tsinghua.edu.cn
Email: luop@mail.tsinghua.edu.cn

†School of Economics and Management, University of Chinese Academy of Science, Beijing, China.
Email: akberaman@hotmail.com

Abstract—Quantitative approaches for software security are
needed for effective testing, maintenance and risk assessment of
software systems. Vulnerabilities that are present in a software
system after its release represent a great risk. Vulnerability
discovery models (VDMs) have been proposed to model vul-
nerability discovery and have has been fined to vulnerability
data against calendar time. Though, these models have various
shortcomings include changes and development of VDMs for
different dataset due to diverse approaches and assumptions in
their analytical formulation. There is a clear need for an intensive
investigation on these models to enhance predictive accuracy
of existing VDMs and adopt the actual behavior of software
vulnerabilities which were not modeled previously. This study
proposed an integrated model to predict a number of software
vulnerabilities by hybridizing the Multi-Layer Perceptron (MLP)
artifical neural network and Vulnerability Discovery Models.
The proposed model is also widely applicable across various
vulnerability datasets and models due to its input diversity by
providing improved fitting and predictive accuracy. Further, the
experimental results show that this model not only retained the
properties of traditional parametric VDM models as well as
MLP’s good nonlinear mapping ability and useful generalization.

keyword Vulnerability discovery model, Artificial neural
network, Integerated model, Security, Multi-Layer Perceptron
neural network

I. INTRODUCTION

With the development of Internet technology, software vul-
nerabilities have increased rapidly and caused an increasing
number of serious security issues. A critical vulnerability
provides an attacker with the ability to access full control of
a software [1] [2]. Therefore, a quantitative characterization
of the vulnerability discovery rates is necessary to assess the
risks associated with the product.

VDMs are the specialization of software reliability growth
models (SRGM) that focus on security errors. Nonetheless,
most previous studies reveal that these models are based
on SRGMs, which are not empirically enough to deal with
vulnerabilities of software [3] [4]. VDMs intensive evalu-
ating the security profile of software as compared to the
vulnerability predications models because they are focusing
only on vulnerable components of software [5] [6] [7] [8]
[9] [10]. Software vendors and customers are using accurate
VDMs to understand security trends and patch management.
However, current research studies are focusing to develop

further improved VDMs to maximize their predictive accuracy.
First VDM model (thermodynamic model) was proposed by
Anderson, which was based on SRGMs. However, this model
is considered as worst in terms of fitting empirical datasets.

Similarly, various statistical models are used either at-
tempting to capture the underlying processes or applying
the principles used in other fields of science to discover
vulnerabilities. These models are classified into two categories:
time-based and effort-based. Time-based models measure the
total number of vulnerabilities over time while effort-based
models count vulnerabilities based on testing efforts. The
current study focuses on time-based models, which still need
further investigation to enhance fitting and predictive accuracy
of VDMs. Numerous time-based VDMs model are proposed in
previous studies i.e., linear model [11], Rescorla’s exponential
(RE) models [12], Alhazmi and Malaiyas logistic (AML) [3]
and multiversion models [13], Weibull model [14], Younis
folded (YF) model, Kapur’s logistic model [15], Anand and
Bhatt’s hump-shaped model [16], and Anand multi-version
VDM [17], and Sharma’s changing point model [18] to model
the rate at which vulnerabilities discovered.

All of the above models are proposed to obtain better fitting
and predicting models for different vulnerability datasets but
most of them are against of certain vulnerability datasets.
These models try to get a better model under a certain
condition, but it cannot give good results with every vul-
nerability dataset. Nonetheless, these models have numerous
shortcomings as discussed below:

1) VDMs uses different approaches with respect to the
assumptions and parameters. In this regards, VDMs can
predict different vulnerability discovery rates by using
the same dataset.

2) A single software vulnerability discovery model
premised on the constant assumptions and can predict
different discovery rates using the same data.

As the neural network can be applied for a variety of
areas because without an assumption similar to traditional
models, the used model is more universal. In this study, we
proposed an integrated approach to solve the aforementioned
key challenges of traditional software vulnerability discovery
models. The purpose of the study is to provide a flexible

DOI reference number: 10.18293/SEKE2019-168 1



TABLE I: Software Vulnerability Discovery models used in evaluation

Models Name Model function Description
Rescorla Exponential (RE) model [19] V (t) = N ⇤ (1� e�at) Exponential model is proposed to fit real data. The

number of vulnerabilities discovered at time t decays
exponentially with the time.

Alhazmi-malaiya Logistic (AML) Model [3] V (t) = B
B⇤C⇤eABt+1

It is based on the capturing the underlying process of
vulnerability discovery and the rate of vulnerability
depends on two factors.

Weibull model [14] V (t) = �{1� e
�( t

� )↵} It assumes that the vulnerability discovery rate varies
according weibull probability distribution function.

Younis Folded (YF) Model [20] V (t) = �
2 [erf(

t�⌧p
2↵

) + erf( t+⌧p
2↵

)] It shows vulnerability discovery model based on the
folded normal distribution.

method with an accurate representation of data frequencies
regardless of their different vulnerabilities discovery rates. An
integrated model takes the assistance of ANN (MLP), which
serve as a non-linear hybrid system of traditional VDMs. The
classical software vulnerability discovery models are used as
the base models and the MLP technique is used to combine the
results of base models, which helps to eliminate the influence
of external parameters and other anomalies of VDMs, arise
due to the assumptions made by these parametric models. The
proposed model can take the advantage of classical VDMS in
an application domain, as in the linear combination model, and
the generalization ability of a neural network, and can improve
the predictive ability of the software vulnerability assessment
models.

The rest of this paper is organized as follows. In Section
II, the proposed method is defined in detail. Experimentations
and Results analysis are performed in Section III. In section
IV, we discuss and highlights the threats to validity. In Section
V, we have discussed the related work. Finally, we conclude
our work in Section VI.

II. PROPOSED MODEL

The proposed method is elaborated in Fig 1. It is divided
into two phases: Phase-I and Phase-II. Detailed elaboration of
these phases has been presented below:

A. Phase-I

In the proposed integrated model the results of multiple
basic vulnerability prediction models serve as input to the
MLP neural network. Therefore, the appropriate base models
needed to be selected from many of the VDMs. As vulnerabil-
ities identified in software shows three stages of the S-shaped
models [3]. The learning phase is started from the release
of the system until the onset of sustained growth because
of increasing popularity. It is followed by the linear phase
when most of the vulnerabilities are to be discovered. The
saturation phase is eventually considered as the last stage.
Alhazmi and Malaiya defined mathematically the transition
point between different phases for the AML model. Therefore
S-shaped models are more accurate than non-S-shaped models
for vulnerabiltiy discovery process. However, S-shaped models
fitting and predictive capability also depends on the skewness
in target vulnerabilities, therefore they never give good predic-
tive results for every vulnerability dataset. In this regard, we

have used the four most popular VDMs (i.e., models ranging
from an exponential to S-shaped models), which are shown in
Table 1, with detailed equations.

After selecting the based VDM models, combined results of
these models, are used as input to the MLP neural network.
We have used the cumulative number of vulnerabilities as a
dependent variable, and time which is measured by months,
as an independent variable. A set of known cummulative
vulnerability data sequences v1(t), v2(t), v3(t) · · · vn(t) are
used as a input to vulnerability discovery models such as:

V DMi = f(v1(t), v2(t), ···, vn(t), a1, a2, ···, ar), (i = 1, 2, ..n)
(1)

where a1, a2, · · ·, an are parameters, and t denots specific
vulnerability occurence time. We have used it on a monthly
basis. The input vulnerability data sequence is denoted as
v1(t), v2(t), · · ·, vn(t) and the future trend vulnerability dis-
covery rates can be written as: vn+1(t), vn+2(t), vn+3(t) · · ·
vn+l(t). After applying the input data sequences v1(t), v2(t), ··
·, vn(t) in each vulnerability discovery model (V DM i).
Here, i shows the specific number of VDMs. However, n

denoted the total number of vulnerabilities used to estimate
parameters and n+ j shows the future predicted values.

The output of first VDM 1 approximation solution/fitted
data and its future trend or predicted values are determined as
V DM 1(fit) = y

(1)
1 , y

(1)
2 , y

(1)
3 ....y

(1)
n and V DM 1(pre) =

y
(1)
n+1, y

(1)
n+2, y

(1)
n+3....y

(1)
n+l respectively.

Same process is repeated for the i number of VDMs, which
generate the specific outputs regarding the input vulnerabil-
ity data sequences. After applying the input data sequences
v1(t), v2(t), · · ·, vn(t) in i

th vulnerability discovery models,
we determine the output of last VDM approximation solu-
tion/fitted data and its predicted values as
V DM i(fit) = y

(i)
1 , y

(i)
2 , y

(i)
3 ....y

(i)
n

and
V DM i(pre) = y

(i)
n+1, y

(i)
n+2, y

(i)
n+3....y

(i)
n+l respectively.

In the first phase the input variable v1, v2, ....vn are used to
get the estimated and predictive results of different VDMs.
Assume that the i

th number of VDMs have been used to
estimate the vulnerabilities and y

(i) denotes estimated and
predictive outputs of ith models.

B. Phase-II

In the next stage, the results of vulnerability discovery
models have been combined by using multi-layer perceptron.



Fig. 1: Detailed diagram of an Integrated VDM model

The MLP is a deep artificial neural network. It is comprised
of more than one perceptrons. It works the same way as feed-
forward neural network where the back propagation algorithm
is in the form of gradient descent function. Almost all al-
gorithms that are applied for MLP training tried to reduce
the amount of error by using appropriate functions. In this
study, we have used three-layered multilayer perceptron which
is composed of an input layer to receive input data a nd an
output layer that predicts input, and in between those two
layers, an arbitrary number of hidden layers are present that are
the true computational engines of MLP. A nonlinear function
is associated with each node like a sigmoid function, except
for the input nodes. The MLP network learned a specific
target function and adjust weights properly using a general
method of linear optimization (gradient function). For this,
the derivative of the errors function concerning the network
weight is measured. The network weights are changed because
of error decreases. The square Euclidean distance is used to
compute the error between the actual output and the desired
output of a network. The following steps are used, to perform
experimentation:

1) Step-1: The input and output variables are presented
first. The vulnerability discovery models outputs from
phase 1 are used as input variable (V DM 1(fit),
V DM 2(fit), ..., V DM i(fit)) and the actual vulner-
ability data is used as target variable v1(t), v2(t), v3(t) ·
· · vn(t)

2) Step-2: The entire set of vulnerability data is di-
vided into two parts: training and the testing part.
The training dataset is used to train the network for
predicting software vulnerabilities. The fitted data of
VDMs y(i)1 , y

(i)
2 , y

(i)
3 ....y

(i)
n are used to train the network.

For testing the predicted values of different VDMs
y
(i)
n+1, y

(i)
n+2, y

(i)
n+3....y

(i)
n+l are used.

3) Step-3: The next step in this study is to use 10-fold cross
validation method, which divides the data into ten folds.
The nine parts are used for training, and the tenth part
is used for validation. It is the best validation process to
maximize the utilization of vulnerability dataset through

Fig. 2: Models fitting for Window 10

Fig. 3: Models fitting for Internet Explorer

repeated resampling of the same dataset randomly.
4) Step-4: After dividing training data into 10-folds, the

MLP model is applied for training the models.
5) Step-5: In this step, the tested data

y
(i)
n+1, y

(i)
k+2, y

(i)
n+3....y

(i)
n+l of VDMs is applied to get the

target predicted values v1(t), v2(t), v3(t) · · · vn(t). The
target values are considered as more closer

6) Step-6: The statistical efficacy measures are estimated
based on the predicted results for all the selected
datasets.

III. EXPERIMENTATION AND ANALYSIS

The proposed model has been validated on the security
vulnerability data of two software products namely Microsoft



TABLE II: Comparison of VDM models used in evaluation

Models
Windows 10

(�2 critical = 83.6753)
Internet Explorer

(�2 critical = 56.9424)
�2 Pvalue DF R2 �2 Pvalue DF R2

RE Model 409.5481 7.467E-52 64 0.9810 428.7739 4.57E-66 41 0.9823
AML Model 1686.6183 0.000E+00 64 0.9739 421.3551 1.33E-64 41 0.9815
Weibull Model 109.5576 3.422E-04 64 0.9938 91.3514 1.06E-05 41 0.9941
Younis Model 245.9183 3.906E-23 64 0.9880 138.7848 1.50E-12 41 0.9913
Proposed Model 34.9911 1.0000 64 0.9990 52.8216 0.102092 41 0.9959

Windows 10 and Internet Explorer obtained CVE details1.
CVE details is a publicaly available CVE security vulnerability
database/information source. Furthermore, a set of models
have been used in order to evaluate which model is performing
best by comparing their overall performance with the proposed
model. We have estimated the parameters of the VDMs using
R [21] tool.

A. Model fitting and goodness of fit analysis

To measure the goodness-of-fit, researchers always use
Pearson’s Chi-square (�2) and calculate the statistical value
of the curve using the following function.

�
2 =

nX

t=1

(Ot � Et)2

Et
(2)

Where Ot and Et are the observed and expected samples
at time t (tth value of the observed sample); Et denotes the
expected cumulative number of vulnerabilities. If the value of
�
2 of VDM for a specific dataset obtains a value less than

the corresponding Chi-critical (�2
critical) value, with the

given significant alpha level (0.05) and degree of freedom, it
is considered that the model is acceptable. The P-value shows
the probability that a statistical value as high as the values
obtained by Equation (2) could have occurred by chance. The
experimentation data is obtained from the analysis of four
VDMs estimated and predicted results. The fitting results of
the four VDMs (RE, AML, Weibull and Younis) for both of
the software datasets, with there fitted entries based on the �

2

test P-values.
For Windows 10, the proposed models fit has remarkable

improvement than other models in Table II, and the fit is
considered very good since the P-value of the �

2 test is higher
than 0.05. Also, the R

2 values are more close to 1 than other
single VDMs. From Fig 2, of the fitted vulnerabilities and the
predicted vulnerabilities for the selected models, shows clearly
that the hybrid approach performing best results than others.
Thus, it is required to combine the output results of different
models than only depend on single model results. It not only
retains the properties of traditional software discovery models
but also combines neural network (MLP) good nonlinear
mapping ability and useful generalization.

For Internet Explorer, the proposed model also shows good
fit than other models, as shown in Table II. The P-value

1www.cvedetails.com

obtained is 0.102092, which is higher than �
2 test P-value

0.05. Also, the R
2 values are more close to 1 than others. Fig

3, shows that the fitted and predicted curve of the proposed
model has better predictive ability among all other models
under consideration.

Thus, it is also concluded that the proposed integrated model
can produce good results with different types of vulnerability
datasets than the single traditional VDMs. It is also clearly
visible in Fig 2 and 3 that the integrated model developed
by combining four models have better fitting and end-point
predictive capability than the models alone.

TABLE III: Average Bias and Average Errors comparison

Windows 10 Internet Explorer
AB AE AB AE

RE 0.2881 0.9990 -1.7984 1.7984
AML -2.7989 0.0000 -1.5529 1.5529
Weibull -0.4353 0.0000 0.3348 0.3348
Younis -0.9040 0.0000 1.5041 1.5041
Proposed 0.0143 0.0000 -0.1472 0.2443

B. Improved predictive capabilities of VDMs

Goodness-of-fit tests often used to assess the applicability
of VDMs. The main use of these models is to predict future
trends based on the previous data, rather than reviewing the
past behavior. Therefore, predictive capability should also be
considered important than just model fitting. The estimated
final values for each time point produced by the four existing
and proposed integrated VDM are compared with the actual
number of vulnerabilities to calculate the predicted errors. The
prediction time span is selected as long term, which is the
main concern of software users to decide whether the select the
software for inclusion in a product with a longer lifetime [22].
Therefore, the last 12 months vulnerability data is predicted
for both software. The two normalized prediction capability
measures [23], average error (AE) and Average bais (AB), as
shown in Equation 3 and 4 respectively, are evaluated.

AE =
1

n

nX

t=1

|⌦t � ⌦

⌦
| (3)

AB =
1

n

nX

t=1

⌦t � ⌦

⌦
(4)

In the above equations, n is a total number of time points
(in months), and ⌦t is the estimated number of total vulnera-



Fig. 4: Predicted Errors of different VDMs for Windows 10

Fig. 5: Predicted Errors of different VDMs for Internet Ex-
plorer

bilities at time t, and ⌦ is the actual number of a total number
of vulnerabilities.

The normalized error values (⌦t�⌦
⌦ ) for windows 10 and

Internet Explorer 11 are plotted in Fig 4 and 5. The values of
AB and AE are given in Table III. AE always give positive
values and AB may give both positive and negative. Fig 4
and 5 shows that the improved models give better predictive
results. As in Table 4, the AB and AE values for both yeilds
good results after applying HPEIAM method on each of the
models. The results yields after applying our technique give
lower AB and AE values than the base models itself.

IV. DISCUSSION AND THREADS TO VALIDITY

In this study, we put forward MLP based integrated vul-
nerability discovery model, and verify the model’s superiority
over other models with experimentation. This integrated model
is comprised of two phases including the first phase, which
reflects the linear combination VDMs, and a second neural
network phase, which serve as non-parametric modeling of
input data sequences. The proposed approach focuses on the
relationship of the performance of VDMs with the specific
vulnerability discovery datasets. The fitting capabilities of four
VDMs along with the chi-square goodness of fit test as well as
R-squared metric indicate that the integrated model fits well,
for both of the datasets. Besides, the future trend predictive
capability can also be estimated using the two main predictive
measuring criterion: AB and AE. The results reveal that the
integrated model’s predictive results also show more accuracy
than the other existing VDMs predictive capability. Therefore,
we conclude that the proposed method can be applied as a

solution for software vulnerability rates estimation problems,
outperform competing VDMs investigated in this study.

As the proposed integrated model makes the results of
multiple basic vulnerability models (base model) as input to
the MLP neural network, the accuracy is in part dependent
on the predictive accuracy of these models. Therefore the
appropriate base models need to be selected from many
software vulnerability models. In this study, only four VDMs
have been selected as base models, however to analyzing
the characteristics of software vulnerability data, and using
the appropriate model selection based on specific criterion is
required to get more accurate results. Another limitation is
the sample data. Our study analyze publicly reported vulner-
abilities without considering unreported data. While this is a
common drawback among vulnerability research, overcomning
this limitation requires direct contact with software vendors.

V. RELATED WORK

Recently, many VDMs have been proposed by researchers,
to model the software vulnerabilities accurately. These models
either attempting to capture the underlying processes or apply-
ing the principles used in other fields of science to discover
vulnerabilities. Each model uses a different approach and with
different assumptions and parameters.

Among them, the exponential model is designed to fit the
real data [12]. In this model, two possible trends were exam-
ined, such as the quadratic model and the exponential model.
The logarithmic model shows the total number of vulnerabil-
ities as logarithmic growth that was first proposed by Poisson
[24] and later it is used by Rahimi [25] adjusting fitting of the
model to the vulnerabilities of a specific application. Alhazmi
and Malaiya proposed a logistic model called AML model in
[26] and analyzed AML in [27]. The predictive capabilities
were evaluated in [28] and [4] by using a different set of
data. Chan et al. proposed a multi-cycle vulnerability discovery
model, which helps to extend the scope of existing models
[29]. Younis et al. [20] inspected the applicability of Folded
VDM and compared it to AML on Win7, OSX 5.0, Apache
2.0 and IE8, and stated that YF was somewhat better than
AML. Joh and Malaiya proposed different S-shaped models
based on the distribution of Weibull, normal, beta and gamma
distribution to evaluate the applicability of the models using
different approaches [30]. Kapur et al. proposed models for the
prediction of software vulnerabilities and determine whether
software reliability growth models can be used to predict
the vulnerability discovery process and show good prediction
results [31]. Recently, Anand and Bhatt [16] proposed a hump-
shaped model to capture the vulnerability exposure pattern due
to the attractiveness of a software product in the market using
weighted criteria based ranking approach. Joh and Malaiya
analyze vulnerability data using the seasonal index and auto-
correlation function approaches, which can be used to improve
the vulnerability discovery models [32]. Sharma and Singh
proposed a new vulnerability discovery model based on the
gamma distribution [33].



Each model defined above uses different approach with
different assumptions and parameters. As a result, the VDMs
can predict different vulnerability discovery rates using the
same data and there is no guidance available about which
model should be used in a given situation. This paper attempts
to address these problems by integrating the classical VDMs
and neural networks.

VI. CONCLUSION

In this study, based on the analysis of the neural network
modeling and the linear combination model, we proposed a
neural-network-based integrated model. The proposed model
achieved better fitting and predictive capability and perform
similar or superior as compared to classical and state of art
VDM models. It not only retains the properties of vulnerability
discovery models but also combines the MLP’s good nonlinear
mapping ability and generalization. To our knowledge, this is
the first study which combines the VDMs and neural network
to predict the number of vulnerabilities. Since, the proposed
integrated method utilizes the results of classical software
vulnerability discovery models serve as input to MLP neural
network, so the further study is needed to select appropriate
base models from number of software VDMs. In addition, a
number of further investigations are possible such as replicate
the experiment with advance machine learning techniques and
more vulnerability datasets.

VII. ACKNOWLEDGMENT

This research was supported by Beijing National Research
Center for Information Science and Technology (BNRist), and
National Natural Science Foundation of China under Grant
Nos. 90818021, 9071803.

REFERENCES

[1] C. P. Pfleeger and S. Lawrence, Security in Computing. Prentice-Hall,
1997.

[2] X. Yang, G. Jabeen, P. Luo, X.-L. Zhu, and M.-H. Liu, “A unified
measurement solution of software trustworthiness based on social-to-
software framework,” Journal of Computer Science and Technology,
vol. 33, no. 3, pp. 603–620, 2018.

[3] O. H. Alhazmi and Y. K. Malaiya, “Quantitative Vulnerability Assess-
ment of Systems Software,” Reliability and Maintainability Symposium,

2005. Proceedings. Annual, pp. 615–620, 2005.
[4] ——, “Application of vulnerability discovery models to major operating

systems,” IEEE Transactions on Reliability, vol. 57, no. 1, pp. 14–22,
2008.

[5] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in ACM Conference on computer and

communications security. Citeseer, 2007, pp. 529–540.
[6] V. H. Nguyen and L. M. S. Tran, “Predicting Vulnerable Software Com-

ponents with Dependency Graphs,” Proceedings of the 6th International

Workshop on Security Measurements and Metrics - MetriSec ’10, p. 1,
2010.

[7] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
vulnerable software components via text mining,” IEEE Transactions on

Software Engineering, vol. 40, no. 10, pp. 993–1006, 2014.
[8] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating

complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE Transactions on Software Engineering,
vol. 37, no. 6, pp. 772–787, 2011.

[9] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose,
“Automatic feature learning for vulnerability prediction,” arXiv preprint

arXiv:1708.02368, 2017.

[10] Y. Shin and L. Williams, “Can traditional fault prediction models be used
for vulnerability prediction?” Empirical Software Engineering, vol. 18,
no. 1, pp. 25–59, 2013.

[11] O. H. Alhazmi and Y. K. Malaiya, “Prediction capabilities of vulner-
ability discovery models,” in RAMS’06. Annual Reliability and Main-

tainability Symposium, 2006. IEEE, 2006, pp. 86–91.
[12] E. Rescorla, “Is finding security holes a good idea?” pp. 14–19, 2005.
[13] J. Kim, Y. K. Malaiya, and I. Ray, “Vulnerability discovery in multi-

version software systems,” in 10th IEEE High Assurance Systems

Engineering Symposium (HASE’07). IEEE, 2007, pp. 141–148.
[14] H. Joh and Y. K. Malaiya, “Modeling Skewness in Vulnerability Discov-

ery,” Quality and Reliability Engineering International, no. September
2013, 2014.

[15] P. Kapur, N. Sachdeva, and S. Khatri, “Vulnerability discovery model-
ing,” in International conference on quality, reliability, infocom technol-

ogy and industrial technology management, 2015, pp. 34–54.
[16] A. Anand and N. Bhatt, “Vulnerability discovery modeling and weighted

criteria based ranking,” Journal of the Indian Society for Probability and

Statistics, vol. 17, no. 1, pp. 1–10, 2016.
[17] A. Anand, S. Das, D. Aggrawal, and Y. Klochkov, “Vulnerability

discovery modelling for software with multi-versions,” in Advances in

Reliability and System Engineering. Springer, 2017, pp. 255–265.
[18] R. Sharma, R. Sibal, and S. Sabharwal, “Change point modelling in

the vulnerability discovery process,” in International Conference on

Advanced Informatics for Computing Research. Springer, 2018, pp.
559–568.

[19] E. Rescorla, “Is finding security holes a good idea?” IEEE Security &

Privacy, vol. 3, no. 1, pp. 14–19, 2005.
[20] A. Younis, H. Joh, and Y. Malaiya, “Modeling learningless vulnerability

discovery using a folded distribution,” in Proc. of SAM, vol. 11.
Citeseer, 2011, pp. 617–623.

[21] R. C. Team, “R development core team. r: A language and environment
for statistical computing. r foundation for statistical computing, vienna,
austria; 2014,” Google Scholar.

[22] F. Massacci and V. H. Nguyen, “An empirical methodology to evaluate
vulnerability discovery models,” IEEE Transactions on Software Engi-

neering, vol. 40, no. 12, pp. 1147–1162, 2014.
[23] Y. K. Malaiya, N. Karunanithi, and P. Verma, “Predictability of software-

reliability models,” IEEE Transactions on Reliability, vol. 41, no. 4, pp.
539–546, 1992.

[24] J. D. Musa and K. Okumoto, “A logarithmic poisson execution time
model for software reliability measurement,” in Proceedings of the 7th

international conference on Software engineering. IEEE Press, 1984,
pp. 230–238.

[25] S. Rahimi, Security vulnerabilities: Discovery, prediction, effect, and

mitigation. Southern Illinois University at Carbondale, 2013.
[26] O. H. Alhazmi and Y. K. Malaiya, “Quantitative vulnerability assessment

of systems software,” in Reliability and Maintainability Symposium,

2005. Proceedings. Annual. IEEE, 2005, pp. 615–620.
[27] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, “Measuring, analyzing and

predicting security vulnerabilities in software systems,” Computers &

Security, vol. 26, no. 3, pp. 219–228, 2007.
[28] O. H. Alhazmi and Y. K. Malaiya, “Measuring and enhancing prediction

capabilities of vulnerability discovery models for apache and iis http
servers,” in Software Reliability Engineering, 2006. ISSRE’06. 17th

International Symposium on. IEEE, 2006, pp. 343–352.
[29] K. Chan, D. Feng, P. Su, C. Nie, and X. Zhang, “Multi-cycle vulnerabil-

ity discovery model for prediction,” Journal of Software, vol. 21, no. 9,
pp. 2367–2375, 2010.

[30] H. Joh and Y. K. Malaiya, “Modeling skewness in vulnerability discov-
ery,” Quality and Reliability Engineering International, vol. 30, no. 8,
pp. 1445–1459, 2014.

[31] P. Kapur, V. S. Yadavali, and A. Shrivastava, “A comparative study of
vulnerability discovery modeling and software reliability growth model-
ing,” in Futuristic Trends on Computational Analysis and Knowledge

Management (ABLAZE), 2015 International Conference on. IEEE,
2015, pp. 246–251.

[32] H. C. Joh and Y. K. Malaiya, “Periodicity in software vulnerability dis-
covery, patching and exploitation,” International Journal of Information

Security, vol. 16, no. 6, pp. 673–690, 2017.
[33] R. Sharma and R. Singh, “Vulnerability discovery in open-and closed-

source software: A new paradigm,” in Software Engineering. Springer,
2019, pp. 533–539.


