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Abstract—During the gradual process of software evolution,
errors appear in different components of a software system. These
errors are later on fixed by developers as part of corrective
maintenance activities. However, if errors appear continuously
from a particular component, that may indicate design flaws
or code smells. Maintenance cost will greatly reduce if design
flaws are treated as early as possible. To find out such flaws
it may require time-consuming manual inspections. This paper
tries to find out such components using the information of
change coupled cluster of files or Java classes at fix-inducing
changes. In this proposed approach, information (like class,
method, parameter of method and variable names) from change
coupled relation of a class at Fix-Inducing Changes (FICs) are
used to provide information about erroneous components. Then
the error history, of software components, is found by using
cosine similarity of information from change coupled cluster of
classes found in FICs to see with the architectural information
found from authenticated sources. Finally, the error history of
components is shown as the percentage of change coupled cluster
of a class found in FICs of each 100 commits in the version control
system.

Index Terms—Fix-Inducing Change, Software Quality Assur-
ance, Software Change, Software Maintenance, Change Coupling

I. INTRODUCTION

Change is an inevitable part of the evolution of software.
Frequently co-changing software artifacts form change cou-
pled relation. Any change in an artifact will influence change
in other artifacts which are change coupled with the former.
This relation can also be considered to form a cluster of
artifacts with respect to a file or class, which may be affected
depending on the change of that class. So any class and its co-
changing artifacts can be considered to be a part of a module or
component which shows close interactions among themselves.

Changes are done to introduce new features into the system
or to fix existing errors and any changes can introduce errors,
flaws or failures in the system. Various works identified these
erroneous changes [1] and analyze their impact [2]. The
reasons behind these changes may be improper coding or
careless implementation of algorithms. For analyzing these
changes, various properties of change like files affected, time,
experience of developer and many others taken into con-
sideration [3] [4] [5] [6]. However, none of those explored
the architectural components of a software system is affected
by those erroneous changes during the process of software
development and maintenance.

Continuous appearance of errors from a particular compo-
nent indicates that either that part has design flaws or it needs

redesigning. To find out such components, manual inspection
of files from source repository and bugs from bug repository
is required. Moreover, the bug repositories will only provide
information about reported bugs whereas many unreported
bugs fixed by developers will remain hidden. So considering
bug repository may give less information than the actual
situation.

Various works tried analyze the quality of software sys-
tems and condition of architectural components [7] [8] [9].
Evolution radar used change coupling relation to show the
condition of software components [7]. This work did not
consider the erroneous changes and only focuses on design
flaws based on change couple relation. Using the comments
from the version control system, sticky notes are seen to
provide useful information [8] but the concept of error is
not seen there. Furthermore, the relationship between the
evolution of software artifacts and the way they are affected
by problems is visualized by D’Ambros et al but it did not
consider component based analysis using commit history [9].
To the best of author’s knowledge, none of the existing works
explored by combining the information of change coupling
relation and Fix-Inducing Changes of source repositories to
find software components error history.

To find the erroneous components, firstly the fix-inducing
changes are found by tracking the modified and deleted of
error fixing changes. Then the entire history is traversed using
a commit window of 100 commits. In every 100 commits, the
classes (only Java classes are considered in this work) found
in the FICs are noted. Then for each of those classes, that class
itself and the cluster of other classes forming change coupled
relation with that class are considered. Then for each of these
cluster classes, information about class, method, method’s
parameter, and variable names are collected. Using the cosine
similarity of the information obtained from each cluster with
the architectural information from the authenticated source,
the most probable component for each cluster is found. Then
of the total clusters, what percentage of clusters belongs to
which component is graphically represented. So, the main
contribution of this paper is to propose a methodology to
generate the error history of software components for the entire
lifetime of any source repository.

II. METHODOLOGY

This work tried to utilize the change coupling information
of classes found in fix-inducing change. Unlike [7] [8] [9],
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this work focuses on components error history. Analyzing this
history might play an important role in the fields of software
architecture, evolution, decay, and similar others.

The entire process of the proposed methodology consists of
three steps. Firstly, fix-inducing changes are extracted by using
historical information. Then clusters of change coupled classes
are identified by observing their changing relation. Lastly, the
error history is analyzed by using cosine similarity between
obtained change coupled cluster of classes and architectural
information.

A. Finding Fix-Inducing Changes (FIC):

Bugs are errors of the system that causes the system to
behave in unintended ways. The origin of the bugs are FICs
which introduce errors in the software system. These are also
known as bug introducing change, Figure 1 explains the entire
process of finding fix-inducing changes. This process starts
with finding fixing commits which are mainly committed in
the version control system by developers with a comment
containing keywords like “Fix”, “Bug”, “Patch” or their past
and gerund form. Any number with hashtags indicating bug
number along with those keywords were also considered to
represent fixing commits. These commits contain the change
to correct errors. This change is done by modifying or deleting
some lines of code that is present in the immediate commit
parent to a fixing commit. To obtain those lines that were
modified or deleted, Diffj tool’s [10] source code is used after
modifying it according to our need. Since Diffj ignores white
space and other format changes, so it ignores the possibility
of finding false FICs as mentioned by [11].

Figure 1: Finding Fix-Inducing Changes.

To track the origin of those lines in the parent commit of
fixing change, Git blame command 1 is used [12]. The commits
which were found are the FICs or changes introducing errors
in the system. All FICs of the repository are found in this way.

1git -c core.abbrev=40 blame -L(line number),+1 (FCParentHash) ˆ –
(filename)

B. Finding Cluster of Change Coupled (CC) classes:

CC classes are found by constructing a co-change matrix
[13]. In this symmetric matrix, any cell, [A, B] and A 6=B,
represents of total changes of artifacts A or B, how many those
changed together. Besides, in the cell [A, A] keeps track of
how many times artifact A changed. Using appropriate support
and confidence, the change coupled relation can be found
among Java classes. Support represents how many times a
class changed and confidence represents the likelihood, which
means if there are 2 coupled artifacts, if one artifact changes,
the probability that another artifact is going to change or not.
In co-change matrix [A, A] represents support and confidence
are represented by following Equation 1.

In Figure 2, there are 2 classes I and J. Among 5 changes of
A and 3 changes of B, both of the co-changed 3 times. So the
probability that if class A changes then class B will change
or that confidence is obtained from equation 1 as 3

5 or 60%.
But if B changes then the confidence that A will change is 3

3
or 100%.

CC classes were found by using different support and confi-
dence in different works. Zimmermann et al used the support
greater than 1 and confidence level 0.5 in their work [14].
However, Bavota et al considered elements that co-changing in
at least 2% of the commits along with a confidence level of 0.8
[15]. Since, 0.8 confidence is high, in this paper 0.7 confidence
level is used along with support 2 or more is considered. So
in the considered 70% confidence and according to Figure 2,
class J will have change coupled relation with I but not the
opposite. This relationship is considered for classes found in
FICs and the time period is taken from the 1st commit to the
FIC. The source of finding this relationship, the co-change
matrix is constructed by considering a n x n array, where
n is the number of files or classes and co-changes of Java
classes within the considered period is stored in that array.
Then for each Java class, the change coupled relation with
others are found based on considered support and confidence.
Those other Java classes that have change coupled relation
with a Java class is considered to form a cluster.

Confidence(A → B) =
support(A → B)

support(A)

=
support(A ∪B)

support(A)

(1)

C. Commit History Analysis:

In this work, fixing changes are found by searching com-
ments which later on leads to fix-inducing changes. Then using
a commit window of 100 commits the entire commit history of
source repository is traversed. However, the initial 20 commits
were omitted for repository setup issues. After that commit
window is used to traverse commits, i.e i.e 20-120, 120-220
and so on. For 100 commits in each window, FICs are analyzed
for their contents. Figure 3 shows the entire process. After
getting all FICs, these are sorted. Then traversing with commit



Figure 2: Example of Co-Change Matrix and Commit Timeline

frame of 100 commits, all FICs that falls within the frame can
be found out.

Figure 3: Commit History Analysis process to show the
erroneous components.

In the contents of those FICs, firstly files with .java exten-
sion were searched. Then those files or classes were taken. For
each of those class, cluster of classes found from the change
coupled relation (with at least 2 support and 70% confidence)
formed from 1st commit to that FIC are taken. Then that
class in FIC along with its classes in change couple cluster
are explored for their class, variable and method names. Then
architectural information are taken from authenticated source
and those information were first cleared of their stop words
and then by applying the porter stemming algorithm their root
words are taken. After that cosine similarity between those
architectural information of different components and change
coupled cluster information is taken to find out the most
probable component for the cluster. After getting names for

each of these clusters, what percentage of total cluster belongs
to which cluster can be easily known. Frequent appearance of
the same component in commit history found by traversing
with a commit window of 100 commits means that component
is vulnerable to errors and responsible for costly corrective
maintenance of the software system.

III. EXPERIMENTATION

This experiment is carried out in a virtual machine where
operating system is Ubuntu 18.04 with 64 GB memory and
16 core CPU. For this experiment, among the popular Java
repositories, 2 java repositories are selected for the study.
These are as follows:

Repository
Name Source Total

Commits
Commits
Analyzed

Number
of
Java
classes

Lines of
Code

Google
Guava [16] Github 4798 4020 3170 768858

jEdit [17] Github 8000 8000 600 196194

TABLE I: General description of repositories.

Of the used 2 repositories, Google Guava is a source
repository of library classes maintained by Google developers.
This provides more functionalities than existing java collection
framework and contains other features like hashing, graph,
range etc. The commits of this repository started from June
2009 to the last commit updated in August 2018. In the case of
jEdit, it is a text editor written in Java. In its source repository,
commits started in 2001 and the last one is a patch commit
in August 2019. By looking at commit history it can be said
that the gradual development and maintenance is very slow in
recent times.

Using the above mentioned repositories, the experiment
is methodologically conducted. Firstly, Fixing changes were
found by analyzing commit comments. After that, diffj [10]
is used to find the lines that were modified or deleted from
FCs parent commit. Since diffj ignores cosmetic and format
changes, possibilities of finding false FICs are thus reduced.
Then those identified lines are tracked by using Git Blame
command to find the FIC commits where the last modifications
are made. The total number of FCs and FICs that are found
in both repositories are showed in Table II.

Repository
Name

Fixing
Commits

Fix-Inducing
Commits

Google
Guava 597 486

jEdit 2752 2270

TABLE II: Total Fix-Inducing Commits and Fixing Commits
of each repository

The FICs are then sorted to find according to commit
timeline. Then using a commit window of 100 commits, the
entire history is traversed. For each FICs within the commit
window, the .java files or classes are being collected. For each



class in FIC, a cluster of CC formed through the gradual
development of the Change Couple relation throughout the
lifespan of a project was analyzed. From the CC cluster of
class in FIC and that class, information about classes, methods,
and variables were collected. These are used to find cosine
similarity with the description of components available from
authenticated sources. Then of total clusters what percent
belongs to a particular component for a particular 100 commit
is found out.

Architectural information for google guava is collected from
authenticated sources like in GitHub or their main website.
In the case of jEdit, their main website is used to collect
information about components. The obtained result mainly
depends on this architectural information as cosine similarity
is performed on this information.

IV. RESULT ANALYSIS

The results are obtained by conducting an experiment on
the first 4000 commits of Google guava and 8000 commits
of commits of jEdit. From the experiment, the name of
components of google guava repository is obtained from [16]
and that of jEdit is obtained from [17]. Table III and IV
contains the name of the components considered.

Components Description

Basic utilities
Deals with nulls, preconditions, com-
mon object methods, ordering, and
throwables

Collections

It is an extension of JDK’s collection
system. It deals with immutable col-
lections, new collection types, powerful
collection utilities, and throwables.

Graphs It mainly represents a graph, network
and has structured data.

Caches Local caching and support a wide vari-
ety of behaviors

Functional idioms It is used to simplify the code greatly.

Concurrency It contains powerful abstractions to
write correct code.

Strings It has useful string operations like join-
ing, splitting and padding.

Primitives
It contains operations on primitives like
int or char which is not provided by
JDK

Ranges
It is an API to deal with both continu-
ous and discrete ranges on comparable
types.

I/O
It contains simplified I/O operations
which specifically deals with I/O
streams or files.

Hashing It deals with hashing problems.

EventBus It deals with publish-subscribe-style
communication between components.

Math
It contains more optimized and tested
math utilities, not provided by the JDK.

Reflection
It contains guava utilities for Java’s
reflective capabilities.

TABLE III: Information about components of Google Guava
repository from github [16].

Components Description

General
General features of the jEdit text editor
providing writing and correcting facili-
ties.

Source Code Editing Dealing with source codes of different
programming language.

Search and Replace Different functionalities dealing with
search.

File Management
It consists of everything related to files,
like opening, editing, renaming and
other such actions.

Customization
It consists of configurations to deal with
users preference like customizable key-
board shortcuts etc.

Extensibility
Various plugins can extend the current
abilities of jEdit to provide more func-
tionalities.

TABLE IV: Information about components of jEdit repository
from github [17].

The name of the components are the features or modules
found from the architectural information of corresponding
sources. In Figure 4a the x-axis represents the commit number
and y-axis represents the percentage of clusters obtained from
FICs within the commit window of 100 commits. In Figure 4a,
it is clearly visible that the file management part contributed
a dominant portion to introduce errors into the software
system. After it is found that file management, SourceEdit,
and extensibility related classes are responsible for introducing
errors into the system. jEdit being a text editor, surely works
on file management will be more and it is expected to produce
more errors. Next comes doing programming using jEdit,
classes which manage it was producing more errors in the
earlier phase of development which later on is replaced by
extensibility. This might be because works on extensibility
feature increased in later phase.

From Figure 4b, it is seen that seen that different compo-
nents of the software system are affected at different times.
However dominant top three are related to Math, Ranges,
and Primitives. This may be associated with the nature of the
project which is a library project. So mainly fixing occurs in
classes when there are problems with continuous or discrete
ranges, primitives with float or int values and calculations
related to math.

Through Figure 4a and 4b, any developer can understand
classes of which components are producing more errors and
thus can try to identify design flaws or code smells so that
these can be addressed to improve the quality of software.

V. THREATS TO VALIDITY

The main factors for which construct validity might be
threatened are described here. Firstly, only commit comments
are searched to identify fixing changes without linking those to
bug repositories. To create a link between fixing changes with
bug report of the bug repository becomes a problem when the
bug ids are not available. So for those cases linking with fixing
changes might lead to unfair situation [18]. Besides, the main
goal of this study is to find erroneous components. Secondly,



(a) Error History of components in jEdit Repository (b) Error History of components in Google Guava Repository

Figure 4: Error History of components

there can be varying behavior in the contents of commits.
Unrelated classes in bug fix can lead to wrong fix-inducing
changes. But it is found that related works are committed
together and 15% of all bug fixes to consist of multiple tangled
changes [19]. Thirdly, all fixes may not be actually corrective
maintenance [20]. However, using 10 random searches in FCs,
only bug fixes are found. The main purpose of those FCs was
corrective maintenance,

This work only considers java classes as Diffj, which is
used for differencing modified and deleted source code lines
between files of two commit version, can work only in java
repositories. In the future extension, different types of project
in different languages will be analyzed. Again, rather than
error history, fixing history can also be obtained by considering
the fixing changes. All of this information will be used to
conduct further research in the fields of software architecture,
decay and quality assurance.

VI. RELATED WORK

Evolution of software cannot be explained solely by struc-
tural dependency [21]. It is found that rather than structural
dependency, change coupling plays a more effective role
in fault proneness and are more relevant [22]. Historical
information about CC classes can be used to predict further
changes based on CC relation [23]. Similarly, based on CC
relation, Zhou et al used Bayesian Network to predict changes
[24]. Furthermore, Fluri et al used tree edit operations in
AST to classify changes depending on how the change is
made [25]. Rather than considering static measures, Arisholm
et al proposed dynamic coupling measures by taking into
account inheritance, polymorphism, and dynamic binding [26].
Moreover, whether or not frequent code changes represent
code smell or design issues was investigated by Ratzinger et
al and it is found that those changing software parts may be
candidates for refactoring [27].

Frequent changes indicate unstable situations as changes do
not satisfy the requirements and correctness expected from the

software system. Due to these frequent changes errors may be
introduced in the system which is shown by DAmbros et al
[28] as change coupling measures have a strong relationship
with software defects. These erroneous changes which intro-
duced a bug or error in the system are called Fix-Inducing
Change by Sliwerski et al [29]. Moreover, information of FICs
and Fixing changes can be used for bug prediction [30] [31],
localization [32] as well as to find out affected parts [33].

Very few works considered combining information from
both change coupling and Bug/Errors. It is found that the
change coupling relationship in recent commits is more corre-
lated with recent FICs compared to commits from origin [34].
Furthermore, works of D’Ambros [7] [9] focused on analyzing
software evolution and quality, and did not use the combined
information to understand the error or maintenance history of
software components.

VII. CONCLUSION

The main achievement of this work is to propose a
methodology to analyze the erroneous components by using
the change coupled relation at fix-inducing changes. Having
knowledge of this information will help the software devel-
opers to find out which part of the system is continuously
responsible for change and producing bugs. To do this, if sep-
arate information about architectural components is available
then cosine similarity can be used. Otherwise, Latent Dirichlet
Allocation can be used to find topics or probable components.
However, in that case, manual labeling is required. From the
obtained information, error-prone components can be easily
identified. Then quality can be further enhanced by refactoring
and re-engineering these error-prone components.
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