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Abstract—Modern analytics solutions succeed to under-
stand and predict phenomenons in a large diversity of
software systems, from social networks to Internet-of-Things
platforms. This success challenges analytics algorithms to deal
with more and more complex data, which can be structured
as graphs and evolve over time. However, the underlying data
storage systems that support large-scale data analytics, such
as time-series or graph databases, fail to accommodate both
dimensions, which limits the integration of more advanced
analysis taking into account the history of complex graphs,
for example. This paper therefore introduces a formal and
practical definition of temporal graphs. Temporal graphs pro-
vide a compact representation of time-evolving graphs that
can be used to analyze complex data in motion. In particular,
we demonstrate with our open-source implementation, named
GREYCAT, that the performance of temporal graphs allows
analytics solutions to deal with rapidly evolving large-scale
graphs.

Index Terms—Data analytics, graph databases, large-scale
graphs, time-evolving graphs

I. INTRODUCTION

The data deluge induced by large-scale distributed sys-
tems has called for scalable analytics platforms. Modern
analytics solutions succeed to understand and predict phe-
nomenons in a large diversity of software systems, from
social networks to Internet-of-Things platforms. Graphs
are increasingly being used to structure and analyze
such complex data [1], [2], [3]. However, most of graph
representations only reflect a snapshot at a given time,
while reflected data keeps changing as the systems evolve.
Understanding temporal characteristics of time-evolving
graphs therefore attracts increasing attention from research
communities [4]—e.g., in the domains of social networks,
smart mobility, or smart grids [5].

Yet, state-of-the-art approaches fail to provide a scalable
solution to effectively support time in graphs. In partic-
ular, existing approaches represent time-evolving graphs
as sequences of full-graph snapshots [6], or they use a
combination of snapshots and deltas [7], which requires
to reconstruct a graph for a given time, as depicted
in Figure 1. However, full-graph snapshots tend to be
expensive in terms of memory requirements, both on disk
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Fig. 1. Snapshots (Si) and deltas (δn) of a time-evolving graph

and in-memory. This overhead becomes even worse when
data from several snapshots need to be correlated, which
is the case for most of advanced analytics [5], [6], [8].
Another challenging issue related to snapshots relates to
the snapshotting frequency: regardless of changes, for any
change in the graph, or only for the major changes, which
results in a tradeoff between duplicating data and feeding
analytics with up-to-date metrics. This is crucial when data
evolves rapidly and at different paces for different elements
in the graph, like it is for example the case with sensor
data in domains like the Internet-of-Things (IoT) or Cyber-
Physical Systems (CPS) [5].

An alternative to snapshotting consists in combining
graphs with time series databases [9], by mapping individ-
ual nodes to time series. However, this becomes quickly
limited when large parts of the graph evolve over time,
inducing multiple time queries to explore the graph. More-
over, the description and the evolution of relationships
among the nodes of the graph are rather hard to model
within a time series database.

In this paper, we therefore introduce a novel temporal
graph data model and storage, which allow analytics
platforms to represent time-evolving graphs in an efficient
manner. Most notably, our approach completely adopts a
radically new approach by using an innovative, node-scale,
and on-demand cloning approach. In temporal graphs, each
node can evolve independently in time, while graphs are
traversed for arbitrary timestamps.

We demonstrate with our open-source implementation
of temporal graphs, named GREYCAT1, that the perfor-
mance of this data model allows analytics solutions to
deal with rapidly evolving large-scale graphs. We compare
our solution with a complete snapshotting approach and a
combination of graph and time series databases.

1https://github.com/datathings/greycat
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The remainder of this paper is organized as follows.
In Section II, we first formalize the semantics of our
temporal graph data model. Then, in Section III, we present
and discuss implementation details of this data model
within GREYCAT, our open-source graph framework. We
thoroughly evaluate the temporal aspects of GREYCAT in
Section IV, before discussing the related work in Section V
and concluding the paper in Section VI.

II. DEFINITION OF THE TEMPORAL GRAPH SEMANTICS

A graph G is commonly defined as an ordered pair con-
sisting of a set V of nodes or vertices and a set E of edges:
G = {V,E}. We define a slightly different semantics for
our temporal graph by distinguishing between a node and
its state. We define a node as a conceptual identifier that
is mapped to its state, which we refer to as state chunk. It
contains the values of all attributes and edges that belong
to a node. Attributes are typed according to one of the
following primitive types: int, long, double, string,
bool, and enumeration. Formally, we define a state
chunk as: The state chunk c of a node n is cn = (An, Rn),
where An is the set of attribute values of n and Rn is the
set of relationship values from n to other nodes. Unlike
other graph models (e.g., Neo4J [10]), ours does not
support edge attributes (like the OO model). However, any
edge attribute can be modeled leveraging an intermediate
node. Next, we define the function read(n) to resolve the
state chunk of a node. We use this function to define a
graph G as: G = {read(n),∀n ∈ N}, where N is the
set of nodes. Unlike common graph definitions, temporal
graphs are not defined statically, but dynamically—i.e.,
their are created as the result of the evaluation of the
read(n) function over all nodes.

The separation between the concept of a node and its
state chunk is essential for our approach. First, it enables
the implementation of a lazy loading mechanism—i.e., by
loading state chunks on-demand into main memory, while
the graph is traversed. As further discussed in Section III,
we build on key/value stores as storage backends for the
temporal graphs. This mapping of a graph to keys and
values is similar to what is proposed in [11]. Secondly, it
allows to define different states for each node depending
on the time. Therefore, we extend the previous definition
of a graph with temporal semantics. We override the
function read(n) with read(n, t), where t ∈ T and T
is a totally ordered sequence of all possible timepoints:
∀ti, tj ∈ T : ti ≤ tj ∨ tj ≤ ti. Next, we extend
the definition of a state chunk with a temporal version:
cn,t = (An,t, Rn,t), where An,t and Rn,t are the sets
of resolved attributes and relationships, for the node n
at time t. Then, we define a temporal graph as follows:
TG(t) = {read(n, t),∀n ∈ N},∀t ∈ T . Every node of
the TG can evolve independently and, as timepoints can

be compared, they naturally form a chronological order.
We define that every state chunk belonging to a node
in a TG is associated to a timepoint and can therefore
be queried along this chronological order in a sequence
TP ⊆ T . We call this ordered sequence of state chunks
the timeline of a node. The timeline tl of a node n is
defined as tln = {cn,t,∀t ∈ TP ⊆ T}. We define three
node operations:
insert(cn,t, n, t): (c×N × T ) 7→ void as the function

that inserts a state chunk c in the timeline t of a node
n, such as: tln := tln ∪ {cn,t}.

read(n, t): (N × T ) 7→ c is the function that retrieves,
from the timeline tln, and up until time t, the most
recent version of the state chunk of n which was
inserted at timepoint ti:

read(n, t) =


cn,ti if (cn,ti ∈ tln)

∧(ti ∈ TP ) ∧ (ti < t)
∧(∀tj ∈ TP → tj < ti)

∅ otherwise

remove(n, t): (N × T ) 7→ void is the function that re-
moves a node n and the associated state chunks from
the time t.

Based on these definitions, although timestamps are
discrete, they logically define intervals in which a state
chunk can be considered as valid within its timeline. When
executing insert(cn1,t1 , n1, t1) and insert(cn1,t2 , n1, t2),
we insert 2 state chunks cn1,t1 and cn1,t2 for the same
node n1 at two different timepoints with t1 < t2. We
define that cn1,t1 is valid in the open interval [t1, t2[ and
cn1,t2 is valid in [t2,+∞[. Thus, an operation read(n1, t)
resolves ∅ if t < t1, cn1,t1 when t1 ≤ t < t2, and
cn1,t2 if t ≥ t2 for the same node n1. After executing
remove(n1, t3), read(n1, t) resolves ∅ if t ≥ t3. Since
state chunks with this semantics have temporal validities,
relationships between nodes also have temporal validities.
This leads to temporal relationships between TG nodes
and forms a natural extension of relationships in the time
dimension. This temporal validity definition follows and
extends our previous work [5]. It enables to transparently
navigate inside the graph without considering time for
every navigation step, by always loading the last valid
version relative to the node the navigation started from.

III. GREYCAT: A TEMPORAL GRAPH
IMPLEMENTATION

A. Mapping nodes to state chunks

The proposed temporal graph data model is a conceptual
view of data to represent and analyze time-evolving com-
plex data. Internally, we structure the data of a temporal
graph as an unbounded set of state chunks. Therefore, we
map the conceptual nodes (and relationships) of a temporal
graph to state chunks. State chunks are the internal data
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Fig. 2. Mapping of temporal graphs to state chunks

structures reflecting a temporal graph and, at the same
time, also used for storing the temporal graph data to per-
sistent storage. A state chunk contains, for every attribute
of a node, the name and value of the attribute and, for every
outgoing relationship, the name of the relationship and a
list of identifiers of the referenced state chunks. Figure 2
depicts a concrete example of the mapping of nodes to state
chunks, according to the semantic definitions of Section II.

At time ti (start of the temporal graph), GREYCAT
maps the nodes and the relationships to 3 state chunks:
Bob, Eve, and Video. At time ti+1, the graph evolves to
declare a relationship watched from Eve to Video. Since
this evolution only affects Eve, GREYCAT only creates
an additional state chunk for Eve at time ti+1 by cloning
and modifying the previous version of Eve’s state chunk
(using copy-on-write). All other nodes are therefore kept
unchanged at time ti+1. At time ti+2, Bob meets Alice,
who sends a friend request to Bob. As only Alice’s status
changes, GREYCAT only needs to create a new state chunk
for Alice from time ti+2.

In this example, the graph contains 10 different con-
ceptual nodes and 12 relationships (counting each bidirec-
tional relation as two edges) and evolves along 3 different
timestamps, but GREYCAT only stores 5 state chunks to
model the whole temporal graph. Whenever the temporal
graph is explored, the correct state chunks are retrieved
depending on the requested time.

B. Lazy-loading state chunks

State chunks are the units of storage in GREYCAT.
They are stored on disk and loaded into main memory
while the graph is explored or when nodes are explicitly
requested. The loading of state chunks is achieved lazily by
GREYCAT, because only attributes and sets of identifiers
are loaded. This theoretically allows GREYCAT to process
temporal graphs of unbounded size even with restricted
main memory. For persistent storage of state chunks, we
rely on key/value stores by using the tuple of (node, time)
as key and the state chunk as value. We serialize chunk
states into Base64 encoded blobs. This format reduces the
required interface to insert, read, and remove state chunks

to a persistent data store. It allows to use different storage
backends depending on the requirements of an applica-
tion: from in-memory key/value stores up to distributed
and replicated NoSQL databases. For fault tolerance and
concurrency, we use a per-node lock policy and rely on the
underlying storage technology to ensure concurrency and
distribution. With a node we also lock the index structures
associated to it (cf. Section III-D). Another consistency
approach, based on consistent global checkpoints, is dis-
cussed in [12]. All clients reading the node (at the same
time) see updates on it. This mapping approach copies state
chunks only on-demand—i.e., copy-on-write—and ensures
efficient read and write operations at any point in time.
Basically, it enables analytics algorithms to be executed
with constant memory requirements.

C. Caching state chunks

Despite of having a positive effect on memory, lazy
loading significantly increases input/output (I/O) opera-
tions. Therefore, we rely on caching mechanisms to reduce
I/O operations, which means that some state chunks are
kept in memory, based on their probability of being reused.
In contrary to pure key/value storages, our state chunks
have semantic relationships, which can be leveraged by the
caching mechanism. For instance, if contiguous timepoints
of the same node are loaded, the temporal index has a
high probability to be reused. We build our caching mech-
anism as a Least-Recently-Used (LRU) cache, where each
read operation is taken into account for the cache victim
eviction computation. To reflect semantic relationships, we
count in temporal index LRU scores: the number of state
chunks using them. This way, we are giving chances for
temporal indexes to be reused to access other timepoints.

D. Indexing state chunks using red-black trees

Temporal graphs can be composed by highly volatile
nodes, characterized by a very long timeline of millions
of timepoints. Such volatile nodes are for example needed
to store sensor data collected by IoT devices. In order to
efficiently execute temporal queries, these timepoints must
be indexed. For scalability reasons, GREYCAT relies on
a lazy loading mechanism for retrieving nodes [5] . In a
similar way, we define temporal indexes with a semantic to
avoid loading millions of timepoints, i.e., the full temporal
index, if only parts of the timepoints are actually matching
a query. Queries in GREYCAT are always precise.

Temporal characteristics of timepoints—i.e., regularity,
periodicity—make some indexing approaches more suit-
able than others [13]. For non-monotonic measurements,
balanced trees offer one of the best compromises between
read and insert performance. In particular, Red-Black Trees
(RBT) are one of the most adopted structures to index
non-monotonic time-series [14]. However, RBTs are in-
memory structures that cannot be partially loaded due to



their balanced hierarchy. To workaround this limitation, we
defined an adaptive multi-layer on top of RBTs in order to
split temporal indexes in pieces that can be lazily loaded.

Our approach, named Adaptive Multi-Layered Red-
Black Tree (AMT), is based on the same balancing princi-
ple than RBTs are, but at a coarser granularity to support
efficient lazy loading. Therefore, we defined the notion of
a supertree that can index fixed-sized subtrees, based on
their oldest timepoint. For every read and insert operation,
the supertree is first loaded and used to locate the relevant
subtrees, which in turn are used to load an updated index.
In addition, to compact the size of supertrees, we define
an adaptive strategy to reconfigure the size of subtrees ac-
cording to the size of the supertree. This adaptive scattering
mechanism offers an efficient approach for short timelines
to use lazy loading, which is automatically relaxed for
longer ones, as illustrated by Algorithm 1.

Algorithm 1. Inserting ti in the AMT for node n
procedure INSERT(n,ti)

trsup ← LOADTREE(n, t0)
tr ← CLOSESTTIME(trsup, ti)
trsub ← LOADTREE(n, tr)
if SIZE(trsup) < step1 then

max← step1
else if SIZE(trsup) < step2 then

max← step2
else

max← step3
end if
if SIZE(trsub) < max then

INSERT(trsub, ti)
else〈

trleft, trright
〉
← SPLIT(trsub)

if ti > LOWEST(trright) then
INSERT(trright, ti)

else
INSERT(trleft, ti)

end if
end if

end procedure

IV. EVALUATION OF GREYCAT

In this section, we evaluate our reference implemen-
tation of the temporal graph model against two potential
alternative implementations: i) a plain graph stored in a
time series database and ii) a plain graph versioned with
checkpoints. More specifically, we focus on read and write
throughput, the elementary operations of data analytics.

A. Experimental Protocol

All the reported experiments were executed on a Linux
server with a 12-core Intel Xeon E5-2430 processor with
128 GB of memory. Experiments have been executed 10
times and the reported numbers refer to mean values.
Experiments are made available on GitHub2 for the sake of

2https://github.com/electricalwind/greycatBench

reproducibility. To compare these approaches, we consider
a synthetic graph of 100, 000 nodes. The generated graph
corresponds to a k-ary tree where each node includes
a unique identifier, an integer value, a character and, if
necessary, a link to the parent node as well as links to
the children nodes. In a second step, we update 15%
of the nodes of the graph repetitively, until reaching an
history of 5, 000 changes. This ratio is extracted from
a smart grid topology generator, which is based on a
realistic smart grid dataset [15]. A node change consists in
randomly setting a new value and a new character to the
node. Our evaluation aims at testing the scalability of each
solution for a growing temporal graph history. Therefore,
we considered the following Key Performance Indicators
(KPI): read throughput and write throughput. Throughput
indicators are reported in nodes read or written per second.

B. Alternative Implementations of Temporal Graphs

We compare GREYCAT with 2 alternative implemen-
tations of temporal graphs: using time series and using
checkpoints.

1) Storing Graphs as Time Series: To build this candi-
date solution we leveraged a plain graph whose values are
versioned in INFLUXDB [16] (version 1.1.2). InfluxDB is
one of the newest and fastest time series databases that
received much attention lately. This category of databases
is heavily used for data mining and forecasting [17],
[18]. While many time series databases provide interesting
features, like SQL-like query languages, their data model
is essentially flat—usually integer or double values—and
does not support complex relationships between data. In
a time series based temporal graph, each node of the
graph maintains its own corresponding time series. Thus,
to retrieve the version of a node at time t, one must first
fetch its time series and then retrieve the value at that
time. However, a major limitation of such an approach in
the context of temporal graphs is that it is not possible
to directly store relations. In our evaluation, we chose to
represent the relationship of a node A to a node B and C
as a field in node A, containing the identifiers of B and C.

2) Storing Graph with Checkpoints: Another
possibility—and the most common one [7], [8]—is
to take a snapshot of the graph at regular intervals. A
snapshot is a complete copy of the full graph. Thus,
conversely to time series, to retrieve a node at time t,
one will first have to load the closest previous snapshot
and then find the node in the graph of this snapshot.
Despite being very simple, such solution comes at the
price of i) redundancy, ii) possible missing values if a
node were updated twice along one interval, and iii) the
impossibility to create new nodes in the past. Techniques
exist to mitigate the expensive cost of a full copy, such
as chained immutable trees, where every update consists



Fig. 3. Write throughput when creating and updating nodes

in a wrapper of the previous version plus a delta. Such
techniques are used to implement transactional storages.
In our evaluation, we use the checkpoints mechanism
offered by ROCKSDB [19], to store graph data with a
minimum amount of redundancy, thanks to the use of
hard links from a new version to the previous stored one.

C. Empirical Evaluation

To measure the efficiency of each solution, we consider
3 steps. First, we load the temporal graph and explore its
history—the throughput is measured for every step of the
graph evolution. Then, we compute the recursive sum of
all children’s integer values of a node recursively at a given
time. This requires to read a large number of nodes (up to
a tenth of the total number of nodes) and a large number of
graph traversals. Finally, we simulate the construction of a
synthetic state vector by building a string with the character
value of the nth child of a node recursively at a given time.
This requires fewer reads (up to log10 of the total number
of nodes), but emphasizes on the ability to handle large
relationships. These benchmarks are evaluated against the
3 temporal graph approaches, which adopt different design
choices. To improve the overall readability, graphs have
been smoothen by gathering measure per group of 100
timestamps and then averaged.

1) Write Throughput: Fig. 3 demonstrates that GR-
EYCAT outperforms the other solutions, with a write
throughput close to 100, 000 nodes per second for step 1
and 400, 000 for step 2. The differences for the two
steps can be explained by the fact that creating a node
is costlier than updating one (for all solutions). Another
interesting observation is that snapshotting performs worse
than INFLUXDB for large-scale graphs for the insertion,
but slightly better for the update step.

2) Read Throughput: Fig. 4 and 5 depict the read
throughput when trying to access nodes in one of their
previous states for the two use cases presented above. Note
that the result starts at 10, 000 as we wait for step 2 to start
to perform read measurements.

Similarly to the write throughput, GREYCAT performs
significantly better than the two other solutions in both

Fig. 4. Read throughput: sum of children

Fig. 5. Read throughput: string building

scenarios for reading, with around 100, 000 nodes per
second. Time series are also stable over time in both cases,
but as expected, the read throughput of traversing specific
relationships, is twice slower than traversing all the nodes
of the relationship. In the case of snapshots, performance
is quite similar in both situations, but decreases over time.

V. RELATED WORK

The need to deal with temporal data has been dis-
cussed across several research communities. Early works
in database communities [20], [21] delivered formal se-
mantics for historical relational databases. Some of these
temporal features are integrated into SQL:2011 or ISO/IEC
9075:2011 [22]. The necessity to reason about time-
evolving data has also been discussed in the area of the
semantic web, e.g., MOTIK [23]. With the emergence of
big data and the IoT, temporal aspects of data, in form of
time series databases [16], [24], gained again visibility in
research communities. However, the data model of time
series databases is essentially flat and does not support
complex relationships between data.

Temporal graph processing frameworks go a step further
and consider time-evolving graphs. CHRONOS [7], and its
extension IMMORTALGRAPH [8], are storage and execu-
tion engines for graph computations on temporal graphs.
They define a temporal graph as a sequence of graph
snapshots at specific points in time. To store temporal
graph data on disk, they use so-called snapshot groups. A



snapshot group is valid for a time interval and comprises
a complete snapshot for the beginning of the interval and
a number of deltas until the end of the interval. GRAPH-
TAU [6], Historical Graph Store (HGS) [25], G* [26], and
KINEOGRAPH [27] are other temporal graph processing
frameworks. They all represent time-evolving graphs as
series of consistent graph snapshots. Furthermore, for none
of these solutions the source code is available. Some
of them optimize storage by using a combination of
complete snapshots at specific timepoints and deltas in-
between these [7]. Nonetheless, in some form or another,
data models of existing approaches represent time-evolving
graphs as sequences of full graph snapshots. This comes
with severe limitations: First of all, full-graph snapshots
are expensive in terms of memory requirements (both on
disk and in-memory). Secondly, for every small change
in the graph it would be necessary to snapshot the graph
(and/or the delta) to keep track of the change history.
Thirdly, the continuous semantics of time is lost by the
discretisation in snapshots. Thus, navigating in the time
and space dimensions of the graph is problematic, which
complicates analytics algorithms.

VI. CONCLUSION AND DISCUSSION

In this paper, we presented a temporal graph data model
and GREYCAT, its open source reference implementation.
Most notably, our approach is able to model large-scale,
time-evolving graphs without relying on snapshotting, like
the current state-of-the-art does [7], [8]. Moreover, GR-
EYCAT is one of the only open source frameworks for
time-evolving graphs. We demonstrated that our temporal
graphs pave the way for analyzing complex data in motion
at scale. In particular, we illustrate that this data model is
especially efficient when analyzing large-scale graphs with
partial changes along time, which is typical for many real
world analytics [5], [6].
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