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Abstract—The Cross-Lingual Entity Alignment (CLEA) aims to
find the aligned entities that refer to the same identity from two
Knowledge Graphs (KGs) in different languages. In real-world
applications, the neighborhood structures of the same entities in
different KGs tend to be non-isomorphic, which makes the entity
representation contain diverse semantics information and poses a
great challenge for CLEA. In this paper, we address this
challenge from two perspectives. On the one hand, cross-KG
relation completion rules are designed with the alignment
constraint of entities and relations to improve the isomorphism of
two KGs. On the other hand, a representation method combining
isomorphic weights is designed to include more isomorphic
semantics for counterpart entities, which will benefit CLEA.
Experimental results show that our model can improve the
isomorphism of two KGs and the alignment performance,
especially for two non-isomorphic KGs.
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L. INTRODUCTION

Knowledge Graphs (KGs) play an important role in NLP
field and data mining-related fields, such as question answering
[4], industrial and academic settings [12]. But the construction
of KGs is very hard that needs substantial resources. Due to the
scarcity of available resources, it is difficult to build KGs for
under-resourced languages, such as Greek, Arabic, etc. To
address this problem, recent research has proposed Cross-
Lingual Entity Alignment (CLEA) to enhance KG of under-
resourced language using well-resourced language [4].

CLEA is to identify the aligned entity pairs referring to the
same objects from two KGs in different languages. To this end,
CLEA methods try to map the entities and relations in two KGs
into a shared space, in which, the embeddings of the same
objects in two KGs are as close as possible. Existing CLEA
methods are classified into TransE-based methods [11] and
Graph Neural Network-based (GNN-based) methods [22].
TransE-based methods assume that two KGs in different
languages have a similar structure, so the embeddings of
aligned entity pairs should have relative similar positions in the
vector spaces. Recently, GNN-based methods have gained a lot
of attention due to their great performance. GNN-based
methods first learn the entity embeddings by aggregating the
neighboring entities and then evaluate the similarity between
entities based on their embeddings. The entities with the
nearest geometric distance are regarded as a pair of aligned
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entities. These methods have proven their effectiveness for the
isomorphic KGs.

However, owing to imbalanced resources and different
cultures, two KGs in different languages are non-isomorphic
generally. Particularly, the ratio of non-isomorphic neighbors is
more than 85% for two KGs [17]. The non-isomorphism means
that the counterpart entities in two KGs tend to contain
heterogeneous neighboring entities, the different numbers of
neighbors and relations. As shown in Fig. 1, Given two non-
isomorphic KGs and some aligned entities as supervised seeds,
(represented by the same shape in yellow), we aim to find more
new aligned pairs, such as “#KH” and “Lincon” (red
double dashed line). However, The neighborhoods of “#k 5
and that of “Lincon” are heterogeneous. They have different
neighbors. However, GNN-based methods aggregate these
heterogeneous neighbors, which will lead to monolingual
embeddings containing different semantics. Thus, the non-
isomorphism will hold back CLEA and pose a great challenge.
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Figure 1. The illustration of non-isomorphism of KGs and our idea of cross-
KG relation completion. The neighborhoods of “#k > and “Lincon” are
heterogeneous. Our idea is to change the topology of two neighborhoods by
completing the relations (red dashed lines).

A few studies have focused on non-isomorphic CLEA.
Their common idea is to expand the neighboring scopes or
filter noisy neighbors. Alinet [17] thinks that distant neighbors
may include more homogeneous entities and expands
neighborhoods to cover more neighbors. DAEA [15] identifies
the useful neighborhood with the importance of relations, and
then the embedding will include similar neighbors and exclude
noisy ones. However, the above methods try to find available
information from a single KG, which has two limitations.



1) Although expanding the neighbors' scope can cover more
homogeneous neighbors, it inevitably covers some noisy
neighboring entities. Moreover, with the increasing scope, the
cost of representation methods also increases exponentially. In
addition, the expansion of neighbor scope cannot improve the
topology isomorphism of two KGs.

2) Existing methods enrich the representation by paying
more attention for closer or more similar neighbors. If these
closer neighbors are non-isomorphic, the representation of
entities will focus more on heterogeneous neighbors and lead to
semantic difference.

To address these problems, we propose a method named
cross-KGs relation completion for non-isomorphic CLEA. Our
method addresses the non-isomorphism in two views. Firstly,
with the assumption that counterpart entities should have
isomorphic neighborhoods, cross-KGs relation completion is
designed to change the topology of KGs and improve the
isomorphism of two KGs, as shown with the red dashed lines
in Fig.1. Secondly, the isomorphic weights are introduced into
representation learning to make entity representation focus
more on the isomorphic neighbors, which will benefit non-
isomorphic CLEA. Our contributions are summarized as:

1) To address the non-isomorphic CLEA, we propose to
improve the topology isomorphism of KGs by cross-KG
relation completion. To our best knowledge, there is little work
focusing on cross-KG completion owing to the unavailable
connection KGs [25]. In this paper, we complete the relations
with some supervised aligned information. With our cross-KG
completion, both completeness and topology isomorphism can
be improved. And KG representation will cover more
isomorphic information on a smaller neighborhood.

2) To reduce the semantic discrepancy of counterpart
entities, the isomorphic weights for two neighborhoods, not the
similarity or importance to the central entity, are introduced
into representation learning. The isomorphic weights will make
the embedding include more isomorphic semantics and exclude
non-isomorphic semantics, making CLEA more easily.

II.  RELATED WORK

A. Methods for CLEA

Existing CLEA methods are classified into TransE-based
methods [11] and Graph Neural Network-based (GNN-based)
methods [22]. And recent studies have shown that GNN-based
methods can achieve outperformance. Gnn-based methods can
be divided into two types: 1) GNN with entity attention. As
an expansion of GNN, Graph Convolutional Network (GCN)
can learn the node-level representation. GCNAlign [22] is the
first study using GCN to learn the representation in low-
dimensional space, and then measures the distance of entities to
find new alignments. Some works [5] put two KGs into one
GCN to learn a shared representation space, in which, it uses
aligned pairs to make entities closer to each other. To represent
the entities with more semantics, Graph Attention network
(GAT) is used to make the representation focus more on the
important or similar neighbors [20]. 2) GCN with relation
attention. To measure the importance of neighbors accurately,
some studies [13] combine the relations with neighbors to find
useful neighbors. By giving more attention to those useful

neighbors, the representation is enhanced further. Other studies
use specific relation to update the attention for neighbors, such
as the node attributes [14] and relation types [19][24].

In sum, GNN-based methods have proven their superiority
for CLEA. However, they only achieve a good performance for
similar knowledge graphs [17].

B. Methods for Non-isomorphic CLEA

Non-isomorphism is common in applications. That means
the counterpart entities have non-isomorphic neighbors. It is a
huge challenge for CLEA. The studies focus on non-
isomorphic CLEA can be divided into two categories. 1) Using
additional information. KDCoE [10] wuses both entity
description and multilingual literal description as additional
information to co-train the embeddings of entities. N-gram [18]
uses the attribute triples to generate the embeddings for
attribute characters. Other works [1][21] also merge additional
configuration information for entities by entities' attributes. 2)
Changing the range of neighborhood. AliNet [17] is the first
work for non-isomorphic CLEA. It expands the scope to cover
more distant neighbors to increase the overlapping KGs. And it
uses attention to reduce the noisy neighbors and emphasis the
useful neighbors. KE-GCN [23] selects the right relations and
their corresponding neighbors from all neighborhoods using
translated method [11]. DAEA [15] uses the relation and level
attention to filter useless and distant neighbors respectively.

Non-isomorphism has attracted much attention. However,
existing methods find available information in one KG while
neglecting the information from cross-KGs.

III.  OUR PROPOSED METHOD

Formally, KG is defined as KG=(E, R, T ). It consists of a
set of entities and a set of relations R, and the knowledge
facts are stored in a collection 7 in form of triples ( , , ),
where h, t € E and r € R. Given two non-isomorphic KGs,
denoted as KGI=(El, R1,Tl1) and KG2= (E2,R2,T2), the task
of our CLEA is to find new aligned entity pairs using some
supervised entity pairs EP=(el; e2)) | (el; € El; e2; EE2).

The framework of our method is shown in Fig.2, which
includes three steps. The first step is cross-KG relation
completion. With the aligned entities as supervised information,
the relations alignment is treated as a constraint to predict the
potential relations. This step changes the topology of each KG
and then improves the topology isomorphism of KGs. The
second step is augmented representation. Isomorphic weights
are introduced into GAT to make KG representation focus
more on the isomorphic neighbors and then the semantic
discrepancy of counterpart entities is reduced. The third step is
the alignment with a loss function. The distance is used to
search for the nearest entity in the whole space and then to find
more alignment pairs.

A. Cross-KGs completion

In this paper, non-isomorphic CLEA is addressed
differently. We introduce the cross-KG relation completion to
change the structure of original KGs and make them more
isomorphic.



It can be easily accepted that the same object in different
KGs should have homogeneous neighborhoods. If they do not,
there may be some relations missing. Motivated by this, we
propose to complete these missing relations according to the
aligned entities and relations. The supervised aligned entities
are known as seeds, and then we need to align the relations.
Owing to that the number of relation types is smaller than that

of entities. Thus the alignment of relations is easier. We
construct the set of aligned relations RP=(r1,, r2)) | (rli € RI,
r2; € R2) as a constraint to the completion, which will reduce
the noise in the cross-KG relation completion.

The cross-KG completion searches the potential relations in
global KGs, and it includes 2 steps, relation alignment and
relation completion. We will describe the two steps in detail.
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Figure 2. The framework of our method. In cross-KG relation completion step, isomorphic entities in yellow are treated as supervised pairs, and the red dashed
lines are the completed relations. In augmented representation step, the yellow W* and gray W- mean isomorphic and non-isomorphic weights respectively.

Relation Alignment Rule: Relations can be aligned based
on whether their related entities are aligned. For two triples (41,
rl, t1) and (h2, r2, t2) from KG1 and KG2, respectively, if the
entities <hl,h2> and <tl,#2> are both aligned, we can infer
that r/ and r2 should be aligned. Based on this observation, we
design the first rule for relation alignment, which is formally
expressed as follows.

IF ((h1,r1, t1)EKGIland (h2,12,t2) EKG2 and < hl,h2 >EEP and <t1, t2>EEP)
THEN RP +=<rl,12>

Relation Completion Rule: Relations can be completed
when two entities are connected in one KG but their aligned
entities are not connected in another KG. With the aligned pairs
<hl,h2>, <tl,t2>, and <rl,r2> as constraints, if (hl,rl,tl)
exists in KGI but (h2,r2,t2) is not included in KG2, we will
complete the triple (h2,r2,¢2) in KG2. We formally write this as
the second rule for relation completion:

IF(<hl,h2>€EPand <tl, t2>EEP and <rl,r2>&ERP and (hl, rl, t1) EKGI
THEN KG2 + = (h2, 12, t2)

The relation alignment rule is used to align relations in two
KGs, and the aligned relations serve as constraints for relation
completion. The relation completion rule is used to complete
potential relations, and these completed relations provide more
triples for relation alignment. The two rules are run iteratively.
Finally, with the completed relations, the neighborhoods of
entities change, and the non-isomorphism is reduced.

It is worth noting that the relation-aligned constraint is
important for relation completion. Firstly, the aligned relations
are introduced as additional information besides neighbors,
which is helpful for CLEA. Secondly, the aligned relation

constraint connects entities and relations into triples as an
aligned unit, ensuring that the completed related neighbors are
unambiguous and can reduce noise. If the aligned relations are
ignored, we can only connect entities but cannot distinguish
their neighbors by relation awareness. Therefore, the relation
constraint is necessary.

B. The isomorphic weights for augmented representation

Although the isomorphism of KGs has been improved after
completion, it cannot ensure the complete isomorphism of KGs.
There still are some heterogeneous neighbors. Thus, we
propose isomorphic weights to focus more on homogeneous
neighbors and ignore heterogeneous ones in representation.
And then the entity embedding will be more suitable for non-
isomorphic CLEA. In this subsection, we first set different
weights for isomorphic neighbors and non-isomorphic
neighbors, and then learn the representation KGs. We take KG/
as an example to show the weighted aggregation representation,
and the representation of KG?2 is similar.

Isomorphic Weight Setting: For two counterpart entities,
if their neighbors are known as aligned seeds, they are called
isomorphic neighbors. It can be defined as follows.

Isomorphic Neighbors: Given e; EKGI and ¢; €KG2, and

= and = denote the neighbors of e; and e;. If
< , > , they are called isomorphic neighbors.
Otherwise, they are non-isomorphic neighbors. The isomorphic
). When () =1, it means and

are isomorphic, and when () =—1, it means they are

value is set as (

heterogeneous.



1 < >
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1 < >

The isomorphic weights of neighbors are set according to
whether they are isomorphic. Especially, the weights are
initialized equally, and then the isomorphic neighbors will
make the weight larger owing to  (-) = 1, and the non-

isomorphic ones will make the weight smaller with (-) =— 1.
, the weight for i-th neighbor of entity e;, is calculated as

following.

=— (C . ) 2

where is the initial weight of neighbors, and it is set to
one out of the number of neighbors equally. is the
normalized factor used to normalize the weight value, and it is
calculated as:

= I C . ) 3)

Weighted Augmented Representation: Isomorphic
weights are combined with GAT to learn KG representation.
Firstly, embeddings of entities and relations are initialized
randomly, denoted as 1 g and 1 e
Then the isomorphic weights are set to all neighbors and
relations to augment those isomorphic neighbors. The weighted
aggregation of relations and neighbors is shown in Formula 4
and 5.

= ( ) “4)

== + ) ©

where refers to the embeddings of relations associated
with entity e;, and refers to the embeddings of neighbors

that belong to entity e;. Combining both relations and neighbors
enables the representation of the entity e;.

=L 1 1 (6)

Secondly, the weighted embeddings are used as the
input of GAT to learn the final representation of KG. Formula 7
shows the learning representation process of GAT.

= (¢ Ll D (7)

where Z is the number of head attention,  is the attention.
BothZand  are computed as MRAEA [8] does.

C. Entity Alignment

With the representation KGs, we find new entity pairs by
searching the nearest entity to each other globally [22]. In this
process, the distance between entities can be computed by the
Manbhattan distance.

(lv 2):| 1 2| (8)

where and

s represent the embeddings of ; and ».

2

To bring similar entities closer to each other in a uniform
space, we shorten the distance by minimizing the following
loss.

= <, s ( (v2—- (12—
(v 22+ O
where represents the margin hyper-parameter. The entities
‘1and ', are considered as negative entities. We randomly

select negative pairs from £/ and E2, similar to MRAEA [8].
As shown in Formula 9, our calculations enhance positive
samples and weaken negative samples in order to narrow the
alignment entity distance.

IV. EXPERIMENT

A. Datasets and Baselines

The performance of our method is evaluated on three large
cross-lingual datasets from DBPISK, which are used
commonly in many studies. For this dataset, the ratio of overlap
coefficient (OC) is used to show the isomorphism of KGs. The
OC is proposed in [17], and it is computed by the ratio of
aligned neighbors to all neighborhoods in one-hop neighboring
range. Higher the OC value, the more isomorphic two KGs
[17]. For example, the OC value of ZH-EN is 11.7%, which
means that only 11.7% of neighborhoods in Chinese and
English KGs are homogeneous. It can be seen that the two KGs
are non-isomorphic. the OC value of JA-EN is 11.6% and the
OC value of FR-EN is 13.1%. Baselines

To wvalidate the effectiveness of our method, fifteen
baselines are compared with our method. These baselines fall
into 3 categories. TransE-based baselines include MTransE
[11], IPTransE [26], and NAEA [27]. GNN-based baselines
include GCN-Align [22], MuGCN [2], GAT [20], R-GCN [13],
MuGCN [2], MRAEA [8], RREA [9], Dual-AMN [7], PSR [6],
Sparse[3] and RpAlign [16]. There are also some baselines
focusing on the non-isomorphic CLEA, including of AliNet
[17], KE-GCN [23] and DAEA [15].

It is worthy to note that a few recent works [1][3][28] have
achieved remarkable performances. [1][28] use some additional
information, such as entities' attribute information and entities'
description information. [3][28] initialize the representation
with Glove embedding. In this paper, we compare our methods
with its variants igoring the additional information for fair
comparision.

B.  Experimental Setting

DBP15K consists of three cross-lingual tasks, namely
DBPzi.en, DBPa.gn, and DBPer ey. For a fair comparison, we
use 30% of alignments data as training and the other 70% as
testing, as other methods did [8]. In addition, there are some
common parameters, which all are set to the same values as the
previous works. The embeddings' dimensions of entities and
relations d=100, attention head number k=2, the depth of GNN
is set to 2, the dropout rate is 0.3 and the learning rate of Adam



is 0.005. The margin-based loss function integrates some
negative entities. The aggregation range, dropout rate, and
learning ratio are set to 2, 0.3, and 0.005 respectively. In this
paper, Hits@k and Mean Reciprocal Rank (MRR) are used to
measure performance.

C. Main Results

Table I shows the performance of our method and baselines.
Experimental results of all baselines are obtained from their
original papers. Some conclusions can be drawn from Table 1.

1) GCN-based methods outperform TransE-based methods,
which is consistent with the conclusion of other works [19].

2) As for GCN-based methods, methods with GAT [7], [20]
perform better than those with GCN. It is because that the
similar or closer entities are given more attention to enrich the
representation of KGs. In addition, the GNN-based methods
focusing on both relations and entities [9], [13] perform better
than those only focusing on the entities.

3) The methods for non-isomorphic CLEA, including
AliNet [17], KE-GCN [23], DAEA [15] and ours, perform

better than the GCN-based methods on average owing to that
they address the non-isomorphism of KGs. It shows that the
non-isomorphism does exist commonly in two KGs and
addressing it will benefit the CLEA.

4) Our method has an obvious improvement than other non-
isomorphism baselines, including AliNet [17], KE-GCN [23],
DAEA [15], KE-GCN [23] and RpAlign[16]. H@1 of our
method is improved by 14.5%, 13.2%, and 14.9% averagely on
three datasets. Compared with AliNet [17], our method not
only covers more neighbors but also changes the topology of
the neighbors using cross-KG relation completion. By
improving the isomorphism of KGs, our method achieves an
improvement. And compared with KE-GCN, our method
enriches the entity embedding by supplementing missing
homogeneous neighbors rather than deleting heterogeneous
neighbors, which includes more related and similar semantic
information. Compared with RpAlign[16], Our completion rule
depends on non-isomorphic relation and assign isomorphic
weights to make the representation include more isomorphic
information.

TABLE L. OVERALL PERFORMANCE OF ALL METHODS ON DBP15K DATASET
DBPZH-EN DBPJA-EN DBPFR-EN
Types Models
H@1 H@10 | MRR | H@! | H@10 | MRR | H@! | H@10 | MRR
MTransE [11] 30.8 61.4 364 | 279 57.5 349 24.4 55.6 33.5
T E-
razsLETsed IPTransE [26] 40.6 735 | 516 | 367 | 693 | 474 | 333 | 685 | 45.1
NAEA [27] 65.0 86.7 72.0 64.1 87.2 71.8 67.3 89.4 75.2
GCN-Align [22] 41.3 74.4 54.9 39.9 74.5 54.6 37.3 74.5 53.2
GAT [20] 41.8 66.7 50.8 44.6 69.5 53.7 | 442 73.1 54.6
R-GCN [13] 46.3 73.4 56.4 | 47.1 75.4 57.1 46.9 75.8 57.0
MuGCN [2] 49.4 84.4 61.1 50.1 85.7 62.1 49.5 87.0 62.1
GCN-based
CLEA MRAEA [8] 65.7 89.5 74.4 72.7 92.3 79.8 73.9 93.8 81.0
RREA [9] 71.5 92.9 79.0 71.3 93.3 79.3 73.9 94.6 81.6
Dual-AMN [7] 73.1 92.3 79.9 72.6 92.7 79.9 75.6 94.8 82.7
PSR [6] 70.2 92.4 78.1 69.8 93.0 78.2 73.1 94.1 80.7
Sparse [3] (L=0) 58.5 78.0 - 59.1 79.1 - 76.0 91.5 -
AliNet [17] 53.9 82.6 62.8 54.9 83.1 64.5 55.2 85.2 65.7
DAEA [15] 56.8 88.3 67.7 57.6 89.2 68.3 58.0 91.2 69.5
non-isomorphism
CLEA KE-GCN [23] 56.2 84.2 66.4 57.0 85.2 67.0 57.2 88.5 68.3
RpAlign [16] 74.7 88.8 79.4 72.9 89.0 78.2 75.2 89.9 80.1
Ours 74.9 92.2 80.6 73.8 92.5 83.0 76.3 93.4 81.7
TABLE II. ABLATION OF OUR METHOD ON DBP15K DATASET
DBPzu-en DBPjs-EN DBPgr-gn
Models
H@! | H@1l0 | MRR H@! | Hw10 | MRR | H@l | H@l0 | MRR
Baseline(AliNet) 53.9 82.6 62.8 54.9 83.1 64.5 55.2 85.2 65.7
Baseline(MRAEA) 65.7 89.5 74.4 72.7 92.3 79.8 73.9 93.8 81.0
W/O isomorphic weights 72.9 90.5 79.7 73.3 92.3 81.8 74.4 93.0 81.2
W/O rel Completion 73.8 91.5 83.0 73.1 92.1 79.9 74.5 93.1 81.3
Ours 74.9 92.2 80.6 73.8 92.5 83.0 76.3 93.4 81.7




D. Ablation Studies

Ablation is conducted in Table II. w/o rel completion
means ignoring the cross-KG relation completion and finds
new aligned pairs from the original KGs. And w/o isomorphic
weights means ignoring isomorphic weights and learns the
representation only with GAT.

The effectiveness of cross-KGs relation completion:
Compared with MRAEA, w/o isomorphic weights improves
H@1 by 2.7% average. Compared with w/o rel completion, our
method also improves H@1. It reveals that cross-KG compl-
etion can improve the completeness and isomorphism of KGs.

The effectiveness of isomorphic weights: Compared with
w/o isomorphic weights, our method improves H@1 by 3.56%
average. This reveals the augmented representation for
isomorphic neighborhoods can enhance KG representation and
is helpful for non-isomorphic CLEA.

E. Analysis

1) Cross-KG relation completion can
completeness and isomorphism of KGs.
Cross-KG relation completion results are shown in Table

improve the

III.

a) After completion, the number of triples increases by
32455 and 6173 for KGzny and KGen respectively. It means
32455 and 6173 relations are completed and the completeness
of KGs is improved. With the increase of the number of
isomorphic edges, the isomorphism of the graph is enhanced,
so that the representation of aligned entities is closer, and the
training results of the graph neural network are more accurate.

b) After completion, OC values are improved by 8.8%,
9.3%, and 9.5%, which shows that isomorphism of KGs is
improved.

TABLE III. THE RESULT OF CROSS-KG RELATION COMPLETION
Datasets Indicators Original After Completed Increase
Tripleszu 70,414 102,869 32,455
Triplesen 95,142 101,317 6,175
DBPzu-en
ocC 11.7% 20.5% 8.8%
H@wl1 67.0% 74.9% 7.9%
Triplesya 77,214 89,804 12,590
Triplesen 93,484 120,489 27,005
DBPja-en
ocC 11.6% 20.9% 9.3%
H@wl1 55.2% 73.8% 18.6%
Triplesrr 105,998 206,658 100,660
Triplesen 115,722 155,477 39,755
DBPrr-gn
ocC 13.1% 22.6% 9.5%
H@1 55.2% 76.3% 21.1%
¢) With the improvement of completeness and  This shows the effectiveness of the cross-KG relation

isomorphism, H@1 is improved by 7.9%, 18.6%, and 21.1%.
2) Our method can achieve an identical performance only
covering the least neighboring scopes.

Some baseline methods, such as AliNet [17], expand the
neighborhood scope to improve the isomorphism between two
KGs. We compared the performance of AliNet and our
method with varying ranges, as shown in Fig.Figure 3. .

a) When the neighborhood range changes from 1-hop to 2-
hops, the performance of AliNet improves significantly,
indicating that expanding the scope covers more homogeneous
neighbors. However, when the scope changes to 3-hops and 4-
hops, the performance of AliNet decreases sharply,
demonstrating that a larger scope covers more heterogeneous
and noisy neighbors, which hinders CLEA.

b) As the neighborhood scope increases, the performance
of both our method and our w/o weight remains relatively
stable. This is because our method changes the topology of all

completion.

entities through cross-KG completion. After completion, the
isomorphism between two KGs will not change when the
neighborhood scope varies. Additionally, as the neighborhood
scope expands, the isomorphic weights weaken distant and
heterogeneous neighbors. This implies that our method does
not require aggregating too many neighbors in the
representation learning.

3) The robustness for non-isomorphism of KGs.

Figure 4. shows the performance of our method with
different OC. The larger the OC value is, the stronger
isomorphism of knowledge graph is. We randomly drop out
some homogeneous neighbors from the original KGs to get
several datasets with different OC. We delete [5%-30%]
isomorphic neighbors and OC value will decrease from 11.1%
to 8.1% for ZH-EN, 11.0% to 8.1% for JA-EN and 12.4% to
9.2% for FR-EN.
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Figure 4. The performance varies with different OC values on three datasets.

Overlap Coefficient

a) With the decreasing of OC, the performances of our
method and MRAEA [8] decrease obviously. It shows that
non-isomorphism will hold back CLEA. While the
performance of Alinet fluctuates over a range because it
randomly selects distant neighbors and does not rely on direct
neighbors.

b) Compared with MRAEA[8], our method degrades more
slowly, and performs relatively higher and more stably. This
reveals that our method is robust, especially for non-
isomorphic CLEA.

4) The robustness for available alignment seeds.

All baselines in this paper are supervised methods. The
number of available seeds will influence the alignment
performance. In our method, the available seeds will influence
both the supervised learning and the cross-KG relation
completion. The results of Hits@1 and the OC value varying
with the size of aligned entity pairs are shown in Figure 5.
and Figure 6.

In Figure 5, the alignment accuracy increases with the
number of pre-aligned seed entities increasing. In Figure 6,
OC value increases more obviously with the increasing of the
seeds number. For Zh-EN, when there are only 1500 seeds
available, the OC increases by 1.84%, while 4500 seeds are
available, the OC increases by nearly 9%. It shows that more
aligned seeds will be conducive to our entity alignment.

500 2500 3500 4500
5f pre-aligned seed entity p

® ZH-EN EN-JA EN-FR

Figure 5.

The performance changes with the size of available aligned entity
pairs.

Figure 6. The OC changes with the size of available aligned entity pairs.



V.  CONCLUSIONS

This paper focuses on non-isomorphic CLEA. To address
the non-isomorphism, cross-KG relation completion is
proposed to complete the missing relations and improve the
completeness and isomorphism. And then, the isomorphic
weights, not the importance of central entities in one KG, are
designed to learn a representation more suitable for CLEA. In
near future, we will explore more suitable method to mearue
the isomorphism of two KGs.
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