
Probabilistic Regular Grammar Inference Algorithm Using

Incremental Technique

Torsak Penpinun
1

and Athasit Surarerks

2

1
 pentorja@gmail.com, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn

University, Bangkok, Thailand
2
 athasit.s@chula.ac.th, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn

University, Bangkok, Thailand

Abstract. Grammatical inference has been studied for a long time where grammar is illustrated by a

collection of re-writing rules, together with their probabilities. We are interested in regular language model

which can be recognized by a finite state machine. The most popular technique is an Alergia algorithm. The

objective is to construct a probabilistic finite state machine using only positive examples together with their

probabilities (or frequency). In this work, we introduce a probabilistic grammatical inference algorithm in

order to construct a prefix tree. The algorithm starts by considering the shortest positive example. Two types

of regular grammar rules (productions) are introduced. Our experimental results show that the probabilities

obtained from our probabilistic finite state machine can be more accurate than the one obtained from the

previous algorithm. We hope that our algorithm will be an alternative way for constructing a probabilistic

finite state machine.

Keywords: grammar inference, probabilistic finite state machine, incremental technique.

1. Introduction

Grammatical inference or grammatical induction has been studied for a long time. The theoretical

foundations in grammatical inference were first introduced by M.E. Gold [1]. This topic can be considered a

problem in natural language processing (NLP) and in human cognition. A grammar is described as a model

of sentence-level phenomena in language. Many researches concentrated on how to learn a grammar based

on Chomsky hierarchy [2] from some positive examples of words in specific language. The typically classes

of grammars can be found [1, 3, 4, and 5]. Grammatical inference can also be applied in many applications

such as automatic speech recognition, statistical machine translation and information retrieval, etc.

Considering the structural pattern recognition, and computational linguistic, the important problem in

inference is that of dealing with positive and negative examples. In detail, grammar can be illustrated by a

collection of re-writing rules, together with their probabilities. Such rules (or production rules) are used for

producing words in some specific languages. The research topic is to determine production rules which can

generate most of words in the target language.

Many research domains including pattern recognition, the process of learning is a set of production rules

for strings in a formal language. The rules used to describe how to generate strings from alphabet that are

valid according to the syntax. Normally use for describing a language model which can represent a set of

sequences of processes. There are limited literatures recognized a language from examples, a probabilistic

finite automaton is usually used for an inference model. Many researches interest in algorithm to inference

model but Alergia algorithm [6], the famous one, is more efficient and accurate. After we studied Alergia

algorithm, we have found that it is a complex grammatical inference and takes a lot of computing time.

 Corresponding author.

 E-mail address: pentorja@gmail.com.

780

Proceedings of 2018 the 8th International Workshop on Computer Science and Engineering

(WCSE 2018)

ISBN 978-981-11-7861-0

Bangkok, 28-30 June, 2018, pp. 7 80 -7 85

admin
打字机文本

admin
打字机文本
 doi: 10.18178/wcse.2018.06.129

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

admin
打字机文本

In this work, we concentrated on how a language can be recognized using some positive examples. We

scoped only on the regular languages. Our concept is to construct a grammatical inference algorithm with

positive examples. The technique is to represent a language using grammar model together with its

probability comparing with the Alergia algorithm. We then show in our work by some examples that the

probability obtained from our algorithm are closed to the original comparing to the previous work.

In this paper, we provide some background in language and grammatical inference model in Section 2.

Our algorithm is proposed in Section 3. The experimental results are illustrated by Section 4. We conclude

our research in Section 5

2. Background Knowledge

This section recalls some formal definitions concerning model of formal languages and their grammar

systems. Probabilistic finite state machines are also detailed since they are used for representing the result of

the inference model. Finally, the Hoeffding bound technique is restated.

Formal Languages and Their Grammar Systems

Formal language is a mathematical model which is represented by a set of symbols or letters. Every

element called words in a specific language is defined by certain rules or grammar productions. Each

language can be used for representing a decision problem. Each word in a language corresponds to a yes-

instance of the associated decision problem. In order to answer an instance of the problem, this is to

determine that the associated word is in the language.

Definition 1: Alphabet, denoted by Σ, is a finite set of characters or symbols.

Definition 2: Language is a set of finite strings of characters in the alphabet. An element in a language is

called a word. We define length of a word x is the number of characters occurred in x.

Example 1: Consider the following path problem. The problem is to determine the path of a robot starting

from “in” and end up at the “out” with respect to the map in Fig.1. To define a language, let Alphabet Σ be a

set {0, 1} where 0 and 1 state for “turn right” and “turn left” respectively. The language associated to this

problem is the set of all yes-instances. The language is {11, 101110, 1011111110, …}. Given a part, in order

to determine that the robot does end up at the “out”, it is to check that the part is a word in the language.

Fig. 1: Path problem as a language model.

Definition 3: Regular grammar G = <, V, P, S > is defined by

  A finite set of characters,

 V A finite set of variables,

 P A finite set of production of the form X  aY, X  a, X   where X and Y are variables,

 S A starting variable,

where  is an empty string. Note that X  aY means that X can be substituted by aY. We usually note

Xab for representing X can be substituted by ab using some sequence of substitutions.

A string x is said to be produced from a grammar G if x can be produced from a sequence of productions

starting from a starting variable S. A language L is said to be a regular language if and only if every string in

L can be produced from a regular grammar.

Example 2: Given a regular grammar G defined by {SaS, SbT, TaT, T}. Let L be a language that

every string in the language can be produced from G. It can see that a string baa is in L since “baa” can be

produced by starting from S,

781

S  bT using the production SbT,

S  baT using the production TaT,

S  baaT using the production TaT,

S  baa using the production T.

Probabilistic Finite State Machine (PFSM)

Finite state machine is a mathematical model for recognizing a regular language with respects to the

input. We will recall now a probabilistic model for a finite state machine as follows:

Definition 4: A probabilistic finite state machine is composed of

 Q A finite set of states where q0 is the initial state,

 Σ A finite alphabet is a set of all characters,

 T A transition function where T:(Q  Σ  {})  (Q  p) where p is the probability of the

transition and  is an empty string.

The probability that a string w = x1x2…xn (where xi is in Σ) is in the language associated to the PFSM is the

product of p’s of every transition for w.

Example 3: Let PFSM be a probabilistic finite state machine as shown in Fig 2. The probability of an empty

string () is 1/2. The probability of “ab” can be computed by 1/4  1/4  2/3 = 1/24.

Fig. 2: An example of a probabilistic finite state machine with two states.

Alergia Algorithm and Hoeffding bound

The Alergia algorithm [6, 7], is a learning algorithm which works by merging the states of a generated

finite state machine from a probabilistic perspective. The algorithm starts by generating a Prefix Tree

Accepter (PTA) from the input (positive) examples and analyses the relative frequency of outgoing

transactions at every node. The algorithm compares probabilities between two states using the Hoeffding

bound concept [8].

Alergia Algorithm

Let  be the finite set of alphabet {a, b}.

Let S be the samples set of strings

Step 1: Initialize Prefix Tree Acceptor

 A is a stochastic prefix tree acceptor from S

Step 2: Compare two successor nodes (start from the root of A)

 Using Hoeffding bound between successor (first node(A) to last node(A))

Step 3: Merging techinques
 If Hoeffding satisfied,

Merge (firstnode(A), the last node(A))

 Determinize(A)

 Repeat Step 3 until no successor.

Step 4: The result

 Return A

782

Example 4: From PFSM defined in Example 7. Given some positive examples as illustrated in Table 1, the

PFSM obtained from the Alergia algorithm contains of two states as shown in Fig. 3.

Table 1: Input positive examples

Strings Frequency Probability Strings Frequency Probability



a

b

aa

ab

ba

bb

aaa

aab

aba

abb

baa

bab

bba

bbb

aaaa

aaab

aaba

aabb

490

128

170

31

42

38

14

8

10

10

4

9

4

3

6

2

2

3

2

0.49

0.128

0.17

0.031

0.042

0.038

0.014

0.008

0.01

0.01

0.004

0.009

0.004

0.003

0.006

0.002

0.002

0.003

0.002

abaa

abab

abba

abbb

baaa

baab

baba

babb

bbaa

bbab

bbba

aaaaa

aaaab

aaaba

aabaa

aabab

aabba

abbaa

abbab

2

2

2

1

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

0.002

0.002

0.002

0.001

0.002

0.002

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

Fig. 3: Probabilistic finite state machine generated by Alergia algorithm.

3. Our Works

Alergia algorithm is always a most popular technique for learning PFSM, but the problem is the number

of states of the PFSM are probably large. The study of Xuanyi Qi [9] aimed to analyse and improve the

algorithm via minimization of deterministic finite automaton. This can reduce the number of states of the

output PFSM. We remark that time complexity of the algorithm is still a problem. In this work, we propose

an alternative way to construct a probabilistic grammar using incremental technique. The result of PFSM can

be obtained from such productions.

Algorithm: Probabilistic grammar inference

Let  be the finite set of alphabet.

Let V be the set of variables.

Input: A finite set of all positive examples in canonically ordering

Output: A finite set of all probabilistic productions

Step 1: Initialize grammar patterns

 Two types of productions can be generated by the algorithm are A and AaB

 Where A and B are variables and a is a character in the alphabet  and  be an empty string.

783

Step 2: Initialize the probability of the -production

 Compute the probability of -production (string with length = 0) from the examples.

Step 3: Determine the probability of string with length = n – 1 (start from n = 1)

 Construct production for generating strings with length = n

 Consistency checking

 Adjust the probability of string with length = n – 1.

Step 4: Increase n by 1

 Repeat Step 3 again until the end of examples.

Concept of the algorithm: the algorithm starts by computing the probability of all productions

corresponding to generate all strings of length n (where n starts from 0 and increasing by 1). For the first step,

only one variable S is introduced. For each step (n > 1), introduce a new variable if the probability of all

productions does not satisfy the consistency of probability constraint, and also adjust the probability values.

The PFSM can be constructed using the final productions obtained from the algorithm.

4. Experimental Results

In this section, we will give you an example. Using the set of all positive examples described in Example

8, we will show you how the productions can be obtained from our algorithm.

Step 1: Initialize grammar patterns

 Generate two productions: S and SaS. (The variable S states for the starting variable.)

Step 2: Initialize the probability of the -production

 Compute the probability of -production from the example, prob(S) = 0.49

Step 3: Determine the probability of string with length = 0

 Construct the production S with prob(S) = 0.49 = prob().

Step 4: Increase n by 1

 Consider strings a and b.

Step 3: Determine the probability of string with length = 1

 Construct the production S  aS with prob(S  aS) = 0.2612

Since prob(a) = prob(S  aS)  prob(S), then

prob(S  aS) = 0.128/0.49 = 0.2612

 Construct the production S  bS with prob(S  bS) = 0.3469

 Since prob(b) = prob(S  bS)  prob(S),

 prob(S  bS) = 0.17/0.49 = 0.3469

 Using the consistency checking, since the prob(S) + prob(S  aS) + prob(S  bS) ≠ 1,

 then the production S  bS must be replaced by S  bT and T  , where prob(S  bT) = 0.2488

 Since prob(b) = prob(S  bT)  prob(T  ), then

 prob(T  ) = 0.17/0.2488 = 0.6832

Step 4: Increase n by 1

 Consider strings aa, ab, ba and bb.

 Repeat until we obtain the final solutions as follows:

 prob(S) = 0.49 prob(S  aS) = 0.2612 prob(S  bT) = 0.2488

 prob(T) = 0.6462 prob(T  aT) = 0.239 prob(T  bS) = 0.1148

 The PFSM can be constructed as illustrated by Fig. 7.

784

Fig. 7: Probabilistic finite state machine generated by our incremental algorithm.

Fig. 8: A comparative bar graph of probabilities between Alergia and our algorithm.

From this comparison graph, we compare probabilities between our incremental algorithm and Alergia

algorithm. It is obtained that 20 input examples that their probabilities obtained from our algorithm are closer

to the original than those obtained from the Alergia algorithm, 10 input examples that the probabilities

obtained from Alergia algorithm are closer than those obtained from our algorithm, and 8 input examples

that both algorithms got the same probabilities.

5. Conclusion

We propose an alternative way to construct a probabilistic finite state machine for describing the set of

some positive examples of the target language. Our concept is to construct the target probabilistic

productions which can fit to the given positive examples. The PFSM can be finally obtained from the

obtained productions. We suggest that our algorithm will be an alternative way for constructing a PFSM.

6. References

[1] M.E. Gold. Language identification in the limit. Information and Control. 1967, 10 (5): 447-474.

[2] N. Chomsky. Syntactic Structures. Berlin: Mouton de Gruyter 1957.

[3] M.V. Zaanen. Bootstrapping syntax and recursion using alignment-based learning. Proceedings of the 17
th

International Conference on Machine Learning, 2000: 1063-1070.

[4] D. Klein and C.D. Manning. Natural language grammar induction with a constituent-context model. Pattern

Recognition. 2005, 38 (9): 1407-1419.

[5] D. Klein. The unsupervised learning of natural language structure, Ph.D. thesis, Standford University, 2005.

[6] R.C. Carrasco, J. Oncina. Learning stochastic regular grammars by means of a state merging method. In: R.C.

Carrasco, J. Oncina (eds.). Grammatical inference and applications, Springer, Berlin, Heidelberg 1994: pp. 139-

152.

[7] C. de la Higuera. Learning probabilistic finite automata. In: C. de la Higuera (eds.). Grammatical Inference:

learning automata and grammars. Cambridge: The United Kingdom at the University Press, 2010: pp. 331-354.

[8] W. Hoeffding. Probability inequalities for sums of bounded random variables. American Statistical Association

Journal 1963, 58: 13-30.

[9] X. Qi. Analysis on Alergia Algorithm: pattern recognition by automata theory. Master’s Projects, 2016: 491.

785

