Static Quenching of Ruthenium(II)-Polypyridyl Complexes by Gallic Acid and Quercetin in Aqueous and Micellar Media

Article Preview

Abstract:

The reactions of gallic acid and quercetin with the excited state Ru(II) complexes proceed through photoinduced electron transfer reaction in sodium dodecyl sulfate (SDS) and aqueous media at pH 11 and has been studied by luminescence quenching technique. The static nature of quenching is confirmed from the ground state absorption studies in both the media. The observed quenching rate constant (kq) values are sensitive to the nature of the ligand, medium and the structure of the quenchers. The electrostatic interaction of the cationic complexes with the anionic micelle reduces the kq values in SDS compared to that in aqueous medium.

Info:

Pages:

21-31

Citation:

Online since:

April 2014

Export:

* - Corresponding Author

[1] A. M. O. Brett, M. E. Ghica, Electroanalysis 15 (2003) 1745-1750.

Google Scholar

[2] M. H. V. Huynh, T. J. Meyer, Chem. Rev. 107 (2007) 5004-5064.

Google Scholar

[3] C. J. P. Monteiro, et al., Photochem. Photobiol. Sci. 4 (2005) 617-624.

Google Scholar

[4] A. Altamirano, A. Senz, H. E. Gsponer, J. Colloid. Interface Sci. 270 (2004) 364-370.

Google Scholar

[5] P. Thanasekaran, J. Y. Wu, B. Manimaran, T. Rajendran, I. J. Chang, S. Rajagopal, G. H. Lee, S. M. Peng, K. L. Lu, J. Phys. Chem. A 111 (2007) 10953-10960.

DOI: 10.1021/jp0742315

Google Scholar

[6] W. Scott, M. R. Mark, Anal. Chem. 72 (2000) 5556-5561.

Google Scholar

[7] M. Grätzel, Inorg. Chem. 44 (2005) 6841-6851.

Google Scholar

[8] G. J. Meyer, Inorg. Chem. 44 (2005) 6852-6864.

Google Scholar

[9] A. Jain, W. Xu, J. N. Demas, B. A. DeGraff, Inorg. Chem. 37 (1998) 1876-1879.

Google Scholar

[10] W. J. Dressick, J. Cline, J. N. Demas, B. A. DeGraff, J. Am. Chem. Soc. 108 (1986) 7567-7574.

DOI: 10.1021/ja00284a021

Google Scholar

[11] S. W. Synder, D. E. Raines, P. T. Rieger, J. N. Demas, B. A. Degraff, Langmuir 1 (1985) 548-552.

Google Scholar

[12] F. H. Quina, E. A. Lissi, Acc. Chem. Res. 37 (2004) 703-710.

Google Scholar

[13] M. I. Gutiérrez, C. G. Martínez, D. García-Fresnadillo, A. M. Castro, G. Orellana, A. M. Braun, E. Oliveros, J. Phys. Chem. A 107 (2003) 3397-3403.

DOI: 10.1021/jp021923e

Google Scholar

[14] T. Chakraborty, S. Ghosh, S. P. Moulik, J. Phys. Chem. B 109 (2005) 14813-14823.

Google Scholar

[15] L. Onel, N. J. Buurma, J. Phys. Chem. B 115 (2011) 13199-13211.

Google Scholar

[16] B. Saha, D. M. Stanbury, Inorg. Chem. 39 (2000) 1294-1300.

Google Scholar

[17] T. Rajendran, S. Rajagopal, C. Srinivasan, P. Ramamurthy, J. Chem. Soc. Faraday Trans. 93 (1997) 3155-3160.

Google Scholar

[18] P. Ramamurthy, Chem. Educ. 9 (1993) 56-60.

Google Scholar

[19] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. Springer Press, New York, 2006.

Google Scholar

[20] K. Kalyanasundaram, Photochemistry of polypyridine and porphyrin complexes. Academic Press, London, 1992.

Google Scholar

[21] M. Can, E. Bulut, M. Ozacar, Ind. Eng. Chem. Res. 51 (2012) 6052-6063.

Google Scholar

[22] P. Trouillas, P. Marsal, D. Siri, R. Lazzaroni, J. L. Duroux, Food Chem. 97 (2006) 679-688.

DOI: 10.1016/j.foodchem.2005.05.042

Google Scholar

[23] C. S. Harris, F. Mo, L. Migahed, L. Chepelev, P. S. Haddad, J. S. Wright, W. G. Willmore, J. T. Arnason, S. A .L. Bennett, Can. J. Physiol. Pharmacol. 85 (2007) 1124-1138.

DOI: 10.1139/y07-101

Google Scholar

[24] A. Mohd, K. Haruo, S. Shiro, J. Anal. Appl. Pyrolysis 92 (2011) 76-87. ( Received 28 March 2014; accepted 08 April 2014 )

Google Scholar