Validation of HPLC Method for Quantitative Determination of Pirimiphos Methyl

Article Preview

Abstract:

The objective of this research to optimise the HPLC method was developed for quantitative determination of Pirimiphos-methyl. Chromatographic separation was achieved on a 250 x 4.6 mm i.d. reversed phase column Qualisil BDS 5u C18, Using deionized acetonitrile:water in the ratio of 85:15 v/v respectively as mobile phase. The eluent was monitored at 254 nm. A sharp peak was obtained for the Pirimiphos-methyl at 9.29 min. The UV Spectrophotometric method performed at 254 nm after full scan analysis using methanol as a solvent. The result revealed that both methods are suitable to carry out routine analysis of Pirimiphos methyl, However HPLC results showed high precise, accurate and sensitive than the UV Spectrophotometer. Hence HPLC method is suitable for trace analysis of Pirimiphos methyl in environmental samples.

Info:

Pages:

93-102

Citation:

Online since:

February 2014

Export:

* - Corresponding Author

[1] IE. Mills, Pirimiphos-methyl: blood concentrations and tissue retention in rat. Report No CTL/P/247. Imperial Chemical industries, Central toxicology laboratory, (1976)11.

Google Scholar

[2] C. Cox, Journal of Pesticide Reform 2 (1996) 2.

Google Scholar

[3] C. Sobarzo, E. Bustoos-Obregón, Asian Journal of Andrology 2 (2000) 147.

Google Scholar

[4] E.ustos-Obregón, P. Gonzállez-Hormanzábal, Int. J. Morphol. 2 (2003) 155.

Google Scholar

[5] A. E. Ghaly, F. Alkoaik, A. Snow, Canadian Biosystems Engineering 49 (2007) 61.

Google Scholar

[6] Hendig Winarno, Agustin N. M. Bagyo, Winarti A. Lindu, Ermin K. Winarno, Atom Indonesia 30(2) (2004) 35.

DOI: 10.17146/aij.2004.213

Google Scholar

[7] US Food and Drug Administration, Pesticide Analytical Manual, Vol. I, FDA, Rockville, MD, 1979.

Google Scholar

[8] P. Lopez-Roldan, M. J. Lopez de Alda, D. Barcelo, Anal. Bioanal. Chem. 378 (2004) 599.

Google Scholar

[9] A. Pasha, Y. N. Vijayashankar, N. G. K. Karanth, J. AOAC Int. 79 (1996) 1009.

Google Scholar

[10] A. Di Corcia, M. Marchetti, Anal. Chem. 63 (1991) 580.

Google Scholar

[11] O. A. Zalat, M. A. Elsayed, M. S. Fayed, M. K. Abd El Megid, International Letters of Chemistry, Physics and Astronomy 2 (2014) 58-63.

DOI: 10.18052/www.scipress.com/ilcpa.21.58

Google Scholar

[12] S. Magdic, A. Boyd-Boland, K. Jinno, J. B. Pawliszyn, J. Chromatogr. A 736 (1996) 219.

Google Scholar

[13] P. L. Wylie, K. Uchiyama, J. AOAC Int. 79 (1996) 571.

Google Scholar

[14] B. F. Scott, J. Struger, H. Tse, J. Environ. Anal. Chem. 61 (1995) 129.

Google Scholar

[15] N. K. Wilson, J. C. Chuang, C. Lyu, J. Expo. Anal. Environ. Epidemiol. 11 (2001) 449.

Google Scholar

[16] D. E. Glotfelty, M. S. Majewski, J. N. Seiber, Environ. Sci. Technol. 24 (1990) 353. ( Received 15 February 2014; accepted 19 February 2014 )

Google Scholar