Nondestructive Radioactive Tracer Technique in Characterization of Anion Exchange Resins Purolite NRW-8000 and Duolite A-368

Article Preview

Abstract:

Radioactive tracer isotopes 131I and 82Br were used to characterize anion exchange resins Purolite NRW-8000 and Duolite A-368 by application of nondestructive technique. The resin characterization was based on their performance during iodide and bromide ion-isotopic exchange reactions. It was observed that during the iodide ion-isotopic exchange reaction at a constant temperature of 40.0 °C, as the concentration of labeled iodide ion solution increases from 0.001 mol/L to 0.004 mol/L, the percentage of iodide ions exchanged increases from 62.10% to 68.10 % using Purolite NRW-8000 resins and from 44.20% to 46.80% using Duolite A-368 resins. Also at a constant temperature of 40.0 °C, 1.000 g of ion exchange resins and 0.003 mol/L labeled iodide ion solution, the values of specific reaction rate (min-1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log Kd were calculated as 0.260, 0.500, 0.130 and 11.8 respectively for Purolite NRW-8000 resin, which was higher than the respective values of 0.130, 0.345, 0.045 and 6.7 as that obtained for Duolite A-368 resins. The similar trend was observed for the two resins during bromide ion-isotopic exchange reaction. From the overall results it appears that under identical experimental conditions, Purolite NRW-8000 resins show superior performance over Duolite A-368 resins. It is expected here that the present nondestructive technique can be extended further for characterization of different industrial grade ion exchange resins, which will help in their selection for specific industrial application.

Info:

Pages:

14-27

Citation:

Online since:

September 2013

Authors:

Export:

* - Corresponding Author

[1] Application of Ion Exchange Processes For the Treatment of Radioactive Waste and Management of Spent Ion Exchangers, Technical Reports Series No. 408, International Atomic Energy Agency, Vienna, (2002).

Google Scholar

[2] Tomoi M., Yamaguchi K., Ando R., Kantake Y., Aosaki Y., Kubota H., J. Appl. Poly. Sci. 64(6) (1997) 1161-1167.

DOI: 10.1002/(sici)1097-4628(19970509)64:6<1161::aid-app16>3.0.co;2-z

Google Scholar

[3] Zhu L., Liu Y., Chen J., Ind. Eng. Chem. Res. 48(7) (2009) 3261-3267.

Google Scholar

[4] Hassan K. F., Kandil S. A., Abdel-Aziz H. M., Siyam T., Preparation of Poly (Hydroxamic Acid) for Separation of Zr/Y, Sr System, Chromatography Research International, 2011, Article ID 638090, 6 pages (2011).

DOI: 10.4061/2011/638090

Google Scholar

[5] Patel S. A., Shah B. S., Patel R. M., Patel P. M., Iranian Polymer Journal 13(6) (2004) 445-453.

Google Scholar

[6] Liu H., Zhang S., Nie S., Zhao X., Sun X., Yang X., Pan W., Chem. Pharm. Bull. 53(6) (2005) 631-633.

Google Scholar

[7] Masram D. T., Kariya K. P., Bhave N. S., Applied Science Segment 1(1) (2010) APS/1513.

Google Scholar

[8] Kumaresan R., Sabharwal K. N., Srinivasan T. G., Vasudeva Rao P. R., Dhekane G., Solvent Extraction and Ion Exchange 24(4) (2006) 589-602.

DOI: 10.1080/07366290600762512

Google Scholar

[9] Deborah L. S., Nazila K., Douglas B. K., James A. D., Geochemical Transactions 14 (2013) 1.

Google Scholar

[10] Samanta S. K., Ramaswamy M., Misra B. M., Sep. Sci. Technol. 27 (1992) 255-267.

Google Scholar

[11] Samanta S. K., Theyyunni T. K., Misra B. M., J. Nucl. Sci. Technol. 32 (1995) 425-429.

Google Scholar

[12] Singru R. N., Thermogravimetric and Spectroscopic Analysis of 8-Hydroxyquinoline 5-Sulphonic Acid-melamine-formaldehyde Polymer Resin-IV, ISRN Thermodynamics, Article ID 323916, 8 pages (2012).

DOI: 10.5402/2012/323916

Google Scholar

[13] Harland C. E., Ion Exchange, 2nd Edition, RSC Publishing, UK, pp.49-89, (1994). DOI: 10.1039/9781847551184-00049, ISBN: 978-0-85186-484-6, eISBN: 978-1-84755-118-4

Google Scholar

[14] Singru R. N., Archives of Applied Science Research 3 (5) (2011) 309-325.

Google Scholar

[15] Sood D. D., Reddy A. V. R., Ramamoorthy N., Indian Association of Nuclear Chemists and Allied Scientists, January (2004) 289-297.

Google Scholar

[16] Radiotracer Applications in Industry — A Guidebook, Technical Reports Series No. 423, IAEA, Vienna 2004.

Google Scholar

[17] Clark M. W., Harrison J. J., Payne T. E., Journal of Colloid and Interface Science 356(2) (2011) 699-705.

Google Scholar

[18] Dagadu C. P. K., Akaho E. H. K., Danso K. A., Stegowski Z., Furman L., Applied Radiation and Isotopes 70(1) (2012) 156-161.

DOI: 10.1016/j.apradiso.2011.09.003

Google Scholar

[19] Koron N., Bratkic A., Ribeiro Guevara S., Vahcic M., Horvat M., Applied Radiation and Isotopes 70(1) (2012) 46-50.

Google Scholar

[20] Meng X., Weiguo L., Analytica Chimica Acta 686 (1) (2011) 107-114.

Google Scholar

[21] Randriamanantsoa L., Morel C., Rabeharisoa L., Douzet J. M., Jansa J., Frossard E., Geoderma 200 (2013) 120-129.

DOI: 10.1016/j.geoderma.2013.01.019

Google Scholar

[22] Mochizuki K., Munakata K., Wajima T., Hara K., Wada K., Shinozaki T., Takeishi T., Knitter R., Bekris N., Okuno K., Fusion Engineering and Design 85(7) (2010) 1185-1189.

DOI: 10.1016/j.fusengdes.2010.02.035

Google Scholar

[23] Li Z., Chansaenpak K., Liu S., Wade C. R., Conti P. S., Gabbaï F. P., MedChemComm 3(10) (2012) 1305-1308.

Google Scholar

[24] Singare P. U., Lokhande R. S., Ionics 18(4) (2012) 351-357.

Google Scholar

[25] Lokhande R. S., Singare P. U., Radiochim. Acta 95(03) (2007) 173-176.

Google Scholar

[26] Lokhande R. S., Singare P. U., Patil V.V., Radiochemistry 50(06) (2008) 638-641.

Google Scholar

[27] Lokhande R. S., Singare P. U., J. Porous Mater 15(03) (2008) 253-258.

Google Scholar

[28] Lokhande R. S., Singare P. U., Dole M. H., J. Nuclear and Radiochemical Sciences 7(02) (2006) 29-32.

Google Scholar

[29] Heumann K. G., Baier K., Chromatographia 15(11) (1982) 701-703.

Google Scholar

[30] Singare P. U., Lokhande R. S., Patil V. V., Prabhavalkar T. S., Tiwari S. R. D., European J. Chemistry 1(1) (2010) 47-49.

Google Scholar

[31] Adachi S., Mizuno T., Matsuno R., J. Chromatogr. A 708 (1995) 177-183.

Google Scholar

[32] Shuji A., Takcshi M., Ryuichi M., Biosci. Biotechnol. Biochem. 60(2) (1996) 338-340. ( Received 27 July 2013; accepted 31 July 2013 )

Google Scholar