Licorice Root Extract Boosts Capsicum annuum L. Production and Reduces Fruit Contamination on a Heavy Metals-Contaminated Saline Soil

Article Preview

Abstract:

Natural supplementations are used in agriculture nowadays not only for improving plant performance but also for reducing the contamination of plant edible parts. Two field trials were conducted to study the potential effects of licorice root extract (LRE; 0.5%) on performance, physio-biochemical components, antioxidant defense system, and contaminants concentrations of Capsicum annuum L. plants grown on a saline soil contaminated with heavy metals. LRE was applied in single (i.e., as rhizosphere application with drip irrigation water; -RA or as foliar spray; -FA) or in integration (i.e., LRE-RA + LRE-FA) treatment. The results showed that both single or integrative treatments significantly increased plant growth and yield, leaf concentrations of photosynthetic pigments, free proline, total soluble sugars, N, P, and K+, ratio of K+/Na+, and activities of CAT, POX, APX, SOD and GR, while significantly reduced contaminants; Na+, Cd, Cu, Pb and Ni concentrations in plant leaves and fruits on heavy metals-contaminated saline soil compared to the control (without LRE). Additionally, the integrative LRE-RA + LRE-FA treatment significantly exceeded both single treatments in this concern, which had been recommended for maximizing pepper plant performances with minimizing heavy metals in fruits on contaminated saline soils.

Info:

Pages:

1-16

Citation:

Online since:

January 2019

Export:

* - Corresponding Author

[1] T.A. Abd El-Mageed, W.M. Semida, M.M. Rady, Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation, Agric. Water Manag. 193 (2017) 46–54.

DOI: 10.1016/j.agwat.2017.08.004

Google Scholar

[2] Y. Alireza et al., Effect of micronutrients foliar application on grain qualitative characteristics and some physiological traits of bean (Phaseolus vulgaris L.) under drought stress, Indian J. Fund. Appl. Life Sci. 4(4) (2014) 124‒131.

Google Scholar

[3] M. Anayat et al., Role of Cd and Hg on biochemical contents of fennel and its reduction by exogenous treatment of nitrogen, Int. J. Sci. Res. Publ. 4(3) (2014) 1–6.

Google Scholar

[4] S.A. Anjum et al., Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought, Sci. Hortic. 140 (2012) 66–73.

DOI: 10.1016/j.scienta.2012.03.028

Google Scholar

[5] K. Apel, H. Hirt, Reactive oxygen species: metabolism oxidative stress and signal transduction, Annu. Rev. Plant Biol. 55 (2004) 373–399.

DOI: 10.1146/annurev.arplant.55.031903.141701

Google Scholar

[6] M. Babaeian et al., Effects of foliar micronutrient application on osmotic adjustments, grain yield and yield components in sunflower (Alstar cultivar) under water stress at three stages, Afr. J. Agric. Res. 6(5) (2011) 1204‒1208.

Google Scholar

[7] N.R. Baker, Chlorophyll fluorescence: a probe of photosynthesis in vivo, Annu. Rev. Plant Biol. 59 (2008) 89–113.

DOI: 10.1146/annurev.arplant.59.032607.092759

Google Scholar

[8] A. Bargaz et al., Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their P-efficiency, J. Agron. Crop Sci. 202(6) (2016) 497–507.

DOI: 10.1111/jac.12181

Google Scholar

[9] L.S. Bates, R.P. Waldren, I.D. Teare, Rapid determination of free proline for water stress studies, Plant Soil. 39 (1973) 205‒207.

DOI: 10.1007/bf00018060

Google Scholar

[10] A.M. Bhaduri, M.H. Fulekar, Antioxidant enzyme responses of plants to heavy metal stress, Rev. Environ. Sci. Biotechnol. 11 (2012) 55–69.

DOI: 10.1007/s11157-011-9251-x

Google Scholar

[11] C.A. Black, Soil plant relationships, 2nd Ed., John Wiley and Sons, NY, USA, 1968.

Google Scholar

[12] B. Chance, A.C. Maehly, Assay of catalase and peroxidase, Methods Enzymol. 2 (1955) 764‒775.

Google Scholar

[13] K.R. Chandrasekhar, S. Sandhyarani, Salinity induced chemical changes in Crotalaria striata DC plants, Indian J. Plant Physiol. 1 (1996) 44–48.

Google Scholar

[14] H.D. Chapman, F.P. Pratt, Determination of Minerals by Titration Method: Methods of Analysis for Soils, Plants, and Water. 2nd Ed., Agriculture Division, Calif. Univ., USA, 1982, p.169–170.

Google Scholar

[15] J. Cheeseman, Hydrogen peroxide and plant stress: a challenging relationship, Plant Stress 1 (2007) 4–15.

Google Scholar

[16] G.U. Chibuike, S.C. Obiora, Heavy metal polluted soils: effect on plants and bioremediation methods – a review, Appl. Environ. Soil Sci. 2014 (2014) Article ID 752708.

DOI: 10.1155/2014/752708

Google Scholar

[17] C. Cobbett, P. Goldsbrough, Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis, Annu. Rev. Plant Biol. 53 (2002) 159–182.

DOI: 10.1146/annurev.arplant.53.100301.135154

Google Scholar

[18] W.C. Dahnke, D.A. Whitney, Measurement of soil salinity, in: W.C. Dahnke (Ed.), Recommended Chemical Soil Test Procedures for the North Central Region, 499. North Central Regional Publication 221, North Dakota Agric. Exp. St. Bull., 1988, p.32–34.

Google Scholar

[19] E. De Pascale et al., Physiological responses of pepper to salinity and drought, J. Am. Soc. Hortic. Sci. 128 (2003) 48–54.

Google Scholar

[20] E.M. Desoky, A.M. Merwad, M.M. Rady, Natural biostimulants improve saline soil characteristics and salt stressed-sorghum performance, Commun. Soil Sci. Plant Anal. 49(8) (2018) 967‒983.

DOI: 10.1080/00103624.2018.1448861

Google Scholar

[21] R.S. Dubey, Photosynthesis in plants under stressful conditions, in: M. Pessarakli (Ed.), Handbook of Photosynthesis, Second ed. CRC Press, New York, 2005, p.717–718.

DOI: 10.1201/9781420027877.sec13

Google Scholar

[22] N. Elham, P. Alireza, Z. Hossein, Influences of ascorbic acid and gibberellin on alleviation of salt stress in summer savory (Satureja hortensis L.), Int. J. Biosci. 5(4) (2014) 245‒255.

DOI: 10.12692/ijb/5.4.245-255

Google Scholar

[23] A.S. Elrys, A.M.A. Merwad, Effect of alternative spraying with silicate and licorice root extract on yield and nutrients uptake by pea plants, Egypt. J. Agron. 39(3) (2017) 279‒292.

DOI: 10.21608/agro.2017.1429.1071

Google Scholar

[24] E. Epstein, A.J. Bloom, Mineral Nutrition of Plants, Principles and Perspectives, 2nd Ed., Sunderland, MA. Sinauer Associates, 2005. ISBN 97808 78931 729.

Google Scholar

[25] A.A. Fadeels, Location and properties of chloroplasts and pigment determination in roots, Physiol. Plant. 15 (1962) 130‒147.

Google Scholar

[26] M. Falkowska et al., The Effect of gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) beijerinck exposed to cadmium and lead stress, Polish J. Environ. Stud. 20(1) (2011) 53–59.

Google Scholar

[27] A. Fargasová, Effect of Pb, Cd, Hg, As, and Cr on germination and root growth of Sinapis alba seeds, Bull. Environ. Contam. Toxicol. 52 (1994) 452–456.

DOI: 10.1007/bf00197836

Google Scholar

[28] J.L. Fielding, J.L. Hall, A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum, J. Exp. Bot. 29 (1978) 969‒981.

DOI: 10.1093/jxb/29.4.969

Google Scholar

[29] C.H. Foyer, G. Noctor, Redox regulation in photosynthetic organisms: signaling: acclimation and practical implications, Trends Plant Sci. 6 (2009) 486–492.

DOI: 10.1089/ars.2008.2177

Google Scholar

[30] C. Garbisu et al., Phytoremediation: A technology using green plants to remove contaminants from polluted areas, Rev. Environ. Health. 17 (2002) 75–90.

DOI: 10.1515/reveh.2002.17.3.173

Google Scholar

[31] S.R. Grattan, C.M. Grieve, Mineral nutrient acquisition and response of plants grown in saline environments, in: M. Pessarakli (Ed.), Handbook of Plant and Crop Stress. Marcel Dekker Press Inc., New York, 1999, p.203‒229.

DOI: 10.1201/9780824746728.ch9

Google Scholar

[32] S. Gul et al., Interactive effects of salinity and heavy metal stress on ecophysiological responses of two maize (Zea Mays L.) cultivars, FUUAST J. Biol. 6(1) (2016) 81–87.

Google Scholar

[33] D.K. Gupta et al., Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress, J. Hazard. Mater. 172 (2009) 479–484.

DOI: 10.1016/j.jhazmat.2009.06.141

Google Scholar

[34] B. Halliwell, M.J.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, London, 2007.

Google Scholar

[35] H.A. Hartung, Potassium-magnesium-calcium glycyrrhizin, United States Patent 4, 176, 228, 1979.

Google Scholar

[36] H. Hayashi et al., Murata transformation of Arabidopsis thaliana with the coda gene for choline oxidase: accumulation of glycine betaine and enhanced tolerance to salt and cold stress, Plant J. 12 (1997) 133–142.

DOI: 10.1046/j.1365-313x.1997.12010133.x

Google Scholar

[37] K. Hebers, V. Sonnewald, Altered gene expression: brought about by inter and pathogen interactions, J. Plant Res. 111 (1998) 323–328.

DOI: 10.1007/bf02512191

Google Scholar

[38] D.M. Hodges et al., Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines, J. Exp. Bot. 48(5) (1997) 1105–1113.

DOI: 10.1093/jxb/48.5.1105

Google Scholar

[39] L.R. Howard et al., Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum spp.) as influenced by maturity, J. Agric. Food Chem. 48 (2000) 1713–1720.

DOI: 10.1021/jf990916t

Google Scholar

[40] S.M. Howladar, A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants, Ecotoxicol. Environ. Saf. 100 (2014) 69–75.

DOI: 10.1016/j.ecoenv.2013.11.022

Google Scholar

[41] J.J. Irigoyen, D.W. Emerich, M. Sanchez-Diaz, Water stress induced changes in the concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants, Plant Physiol. 8 (1992) 455–460.

DOI: 10.1034/j.1399-3054.1992.840109.x

Google Scholar

[42] M.L. Jackson, Soil Chemical Analysis. Prentice Hall, Ic., Englewood Califfs, New Jersy, 1973.

Google Scholar

[43] A. Kadkhodaie, S. Kelich, A. Baghbani, Effects of salinity levels on heavy metals (Cd, Pb and Ni) absorption by sunflower and sudangrass plants, Bull. Environ. Pharmacol. Life Sci. 1(12) (2012) 47–53.

Google Scholar

[44] M.H. Kalaji, S. Pietkiewicz, Salinity effect in plant growth and other physiological process, Acta Physiol. Plant. 15 (1993) 89-124.

Google Scholar

[45] D. Kaydan, M.Y. Okut, Effects of salicylic acid on the growth and some physiological characters in salt-stressed wheat (Triticum aestivum L.), Tarim Bİlimleri Dergisi 13(2) (2007) 114–119.

DOI: 10.1501/tarimbil_0000000444

Google Scholar

[46] L. Kong, M. Wang, D. Bi, Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress, Plant Growth Regul. 45 (2005) 155‒163.

DOI: 10.1007/s10725-005-1893-7

Google Scholar

[47] J. Kováčika, S. Dresler, Calcium availability but not its content modulates metal toxicity in Scenedesmus quadricauda, Ecotoxicol. Environ. Saf. 147 (2018) 664–669.

DOI: 10.1016/j.ecoenv.2017.09.022

Google Scholar

[48] M. Lachica, A. Aguilar, J. Yanez, Analysis foliar. Métodos utilizados en la Estacion Experimental del Zaidin, An. Edafol. Agrobiol. 32 (1973) 1033‒1047.

Google Scholar

[49] W. Li et al., Roles of gibberellins and abscisic acid in regulating germination of Suaeda salsa dimorphic seeds under salt stress, Front. Plant Sci. 6 (2016) 1235.

DOI: 10.3389/fpls.2015.01235

Google Scholar

[50] E.V. Maas, G.J. Hoffman, Crop Salt Tolerance ‒ Current Assessment, J. Irrig. Drain. Div., Am. Soc. Civ. Eng. 103 (1977) 115–134.

DOI: 10.1061/jrcea4.0001137

Google Scholar

[51] W. Maksymiec, Signaling responses in plants to heavy metal stress, Acta Physiol. Plant. 29 (2007) 177–187.

DOI: 10.1007/s11738-007-0036-3

Google Scholar

[52] D.A. Meloni, C.A. Martınez, Glycinebetaine improves salt tolerance in vinal (Prosopis ruscifolia Griesbach) seedlings, Braz. J. Plant Physiol. 21 (2009) 233–241.

DOI: 10.1590/s1677-04202009000300007

Google Scholar

[53] C.A. Newall, L.A. Anderson, J.D. Phillipson, Herbal Medicines. First Published. The Pharmaceutical Press, London, 1996.

Google Scholar

[54] G. Noctor et al., Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling, J. Exp. Bot. 53 (2002) 1283–1304.

DOI: 10.1093/jexbot/53.372.1283

Google Scholar

[55] M.I. Nossier, M. Gawish, M.T.A. Taha, Response of wheat plants to application of selenium and humic acid under salt stress conditions, Egypt. J. Soil Sci. 57(2) (2017) 175–187.

DOI: 10.21608/ejss.2017.3715

Google Scholar

[56] M.M. Rady, G.F. Mohamed, Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract, Sci. Hortic. 193 (2015) 105–113.

DOI: 10.1016/j.scienta.2015.07.003

Google Scholar

[57] M.M. Rady, S.S. Taha, S. Kusvuran, Integrative application of cyanobacteria and antioxidants improves common bean performance under saline conditions, Sci. Hortic. 233 (2018) 61–69.

DOI: 10.1016/j.scienta.2018.01.047

Google Scholar

[58] M.M. Rady, B.C. Varma, S.M. Howladar, Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract, Sci. Hortic. 162 (2013) 63‒70.

DOI: 10.1016/j.scienta.2013.07.046

Google Scholar

[59] M.V. Rao, G. Paliyath, D.P. Ormrod, Ultraviolet-B radiation and ozone-induced biochemical changes in the antioxidant enzymes of Arabidopsis thaliana, Plant Physiol. 110 (1996) 125–136.

DOI: 10.1104/pp.110.1.125

Google Scholar

[60] H. Rehman et al., Magnesium and organic biostimulant integrative application induces physiological and biochemical changes in sunflower plants and its harvested progeny on sandy soil, Plant Physiol. Biochem. 126 (2018) 97–105.

DOI: 10.1016/j.plaphy.2018.02.031

Google Scholar

[61] R.K. Sairam, K.V. Rao, G.C. Srivastava, Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration, Plant Sci. 163 (2002) 1037-1046.

DOI: 10.1016/s0168-9452(02)00278-9

Google Scholar

[62] A. Schutzendubel, A. Polle, Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization, J. Exp. Bot. 53 (2002) 1351–1365.

DOI: 10.1093/jexbot/53.372.1351

Google Scholar

[63] W.M. Semida, M.M. Rady, Presoaking application of propolis and maize grain extracts alleviates salinity stress in common bean (Phaseolus vulgaris L.), Sci. Hortic. 68 (2014) 210–217.

DOI: 10.1016/j.scienta.2014.01.042

Google Scholar

[64] S. Sevengör et al., The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling, Afr. J. Agric. Res. 6(21) (2011) 4920–4924.

Google Scholar

[65] S. Shabala, L.J. Schimanski, A. Koutoulis, Heterogeneity in bean leaf mesophyll tissue and ion flux profiles: leaf electrophysiological characteristics correlate with the anatomical structure, Ann. Bot. 89 (2003) 221–226.

DOI: 10.1093/aob/mcf029

Google Scholar

[66] Sh.M. Thanaa et al., Response of nonpareil seedlings almond to foliar application of licorice root extract and bread yeast suspend under south Sinai conditions, J. Innov. Pharm. Biol. Sci. 3 (2016) 123–132.

Google Scholar

[67] H. Thomas, C.J. Howarth, Five ways to stay green, J. Exp. Bot. 51 (2000) 329–337.

Google Scholar

[68] R.L. Thomas, J.J. Jen, C.V. Morr, Changes in soluble and bound peroxidase-IAA oxidase during tomato fruit development, J. Food Sci. 47 (1982) 158‒161.

DOI: 10.1111/j.1365-2621.1982.tb11048.x

Google Scholar

[69] S. Trapp et al., Plant uptake of NaCl in relation to enzyme kinetics and toxic effects, Environ. Exp. Bot. 64 (2008) 1–7.

Google Scholar

[70] F. Van Assche, H. Clijsters, Effects of heavy metals on enzyme activity in plants, Plant Cell Environ. 13 (1990) 195–206.

DOI: 10.1111/j.1365-3040.1990.tb01304.x

Google Scholar

[71] A.P. Vitoria, P.J. Lea, R.A. Azevado, Antioxidant enzymes responses to cadmium in radish tissues, Phytochem. 57 (2001) 701‒710.

DOI: 10.1016/s0031-9422(01)00130-3

Google Scholar

[72] Yu.N. Vodyanitskii, Standards for the contents of heavy metals in soils of some states, Ann. Agr. Sci. 14(3) (2016) 257–263.

DOI: 10.1016/j.aasci.2016.08.011

Google Scholar

[73] F.S. Watanabe, S.R. Olsen, Test of ascorbic acid method for determine phosphorus in water and NaHCO3 extracts from soil, Soil Sci. Soc. Amer. Proc. 29 (1965) 677–678.

DOI: 10.2136/sssaj1965.03615995002900060025x

Google Scholar

[74] M. Wierzbicka, Resumption of mitotic activity in Allium cepa L. root tips during treatment with lead salts, Environ. Exp. Bot. 34 (1994) 173‒180.

DOI: 10.1016/0098-8472(94)90036-1

Google Scholar

[75] B. Wolf, A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status, Commun. Soil Sci. Plant Anal. 13 (1982) 1035‒1059.

DOI: 10.1080/00103628209367332

Google Scholar

[76] J. Xu, Q. Hu, Effect of foliar application of selenium on the antioxidant activity of aqueous and ethanolic extracts of selenium-enriched rice, J. Agric. Food Chem. 52 (2004) 1759‒1763.

DOI: 10.1021/jf0349836

Google Scholar

[77] E. Yildirim, H. Karlidag, M. Turan, Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply, Plant Soil Environ. 55(5) (2009) 213–221.

DOI: 10.17221/383-pse

Google Scholar

[78] S.S. Zaki, M.M. Rady, Moringa oleifera leaf extract improves growth, physiochemical attributes, antioxidant defense system and yields of salt-stressed Phaseolus vulgaris L. plants, Int. J. Chem. Tech. Res. 8(11) (2015) 120‒134.

DOI: 10.1016/j.scienta.2015.07.003

Google Scholar

[79] B.A. Zayed, A.K.M. Salem, H.M. El-Sharkawy, Effect of different micronutrient treatments on rice (Oryza sativa L.) growth and yield under saline soil conditions, World J. Agric. Sci. 7 (2011) 179‒184.

Google Scholar

[80] J-K. Zhu, Plant salt tolerance, Trends Plant Sci. 6 (2001) 66–71.

Google Scholar