Review


DOI :https://doi.org/10.18017/iuitfd.34130   IUP :https://doi.org/10.18017/iuitfd.34130    Full Text (PDF)

The impact of molecular events on myeloproliferative neoplasms.

İpek Yönal HindilerdenFehmi HindilerdenFatma Deniz Sargın

Chronic myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoiesis resulting from the transformation of a hematopoietic stem cell, with abnormal proliferation of one or more of the myeloid lineages. The Philadelphia-negative (Ph-negative) classical MPNs mainly comprise polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). The identification of JAK2V617F mutation in early 2005 followed by the discovery of JAK2 exon 12 and MPL gene mutations, have modified the understanding of the pathogenesis of these various disease entities. However, all these mutations fail to explain the heterogeneity of these entities. This has led to the discovery of a series of mutations in patients with MPN involving the negative regulators of signaling pathways, such as LNK, mutated or deleted transcription factors such as IKZF1 and Tp53, a member of the MAPK signaling pathway NRAS, and mutations in epigenetic regulators such as TET2, ASXL1, EZH2 and IDH1/2. Mutations in CALR were discovered in a majority of JAK2V617F- and MPL-negative ET and PMF patients. Among MPN patients, genetic abnormalities affecting epigenetic regulation are often expressed in those harboring JAK2, MPL or CALR mutations which imply a collaboration between these two classes of mutations in MPN pathogenesis. Despite the recent insights into the molecular events of these diseases, it has become increasingly clear that these mutations were not MPN specific. There are likely yet additional unidentified genetic events which contribute to MPN development. We review recent data on the impact of genetic and epigenetic abnormalities in MPN pathogenesis.

DOI :https://doi.org/10.18017/iuitfd.34130   IUP :https://doi.org/10.18017/iuitfd.34130    Full Text (PDF)

MİYELOPROLİFERATİF NEOPLAZİLERDE MOLEKÜLER OLAYLARIN ÖNEMİ

İpek Yönal HindilerdenFehmi HindilerdenFatma Deniz Sargın

Kronik miyeloproliferatif neoplaziler (MPN), hematopoetik kök hücreden köken alan, bir veya daha fazla miyeloid serinin anormal proliferasyonu ile karakterize hematopoetik sistemin klonal bir grup hastalığıdır. Philadelphia-negatif (Ph-negatif) klasik MPN, başlıca polisitemia vera (PV), esansiyel trombositemi (ET) ve primer miyelofibrozisten (PMF) oluşmaktadır. 2005 yılında JAK2V617F mutasyonunun, ardından JAK2 ekzon 12 ve MPL gen mutasyonlarının tanımlanmasından sonra, farklı özellikler gösteren bu hastalık grubunun patogenezi anlaşılmaya başlamıştır. Fakat bu mutasyonların hiçbiri heterojeniteyi açıklamamaktadır. Bunu takiben, MPN tanılı hastalarda bir seri mutasyonlar keşfedilmiştir. Bunlar arasında sinyal yolaklarında negatif düzenleyici etkileri olan LNK geni mutasyonları, IKZF1 ve Tp53 gibi transkripsiyon faktörlerinin mutasyonları veya delesyonları, MAPK sinyal yolağının bir üyesi olan NRAS geni mutasyonları yanında TET2, ASXL1, EZH2 ve IDH1/2 gibi epigenetik düzenleyicilerdeki mutasyonlar vardır. JAK2V617F ve MPL mutasyonu olmayan ET ve PMF hastalarının çoğunda CALR mutasyonu bulunmaktadır. MPN'de JAK2, MPL veya CALR mutasyonunu taşıyan hastaların çoğuna eşlik eden epigenetik anormalliklerin varlığı, bu iki sınıf mutasyon grubu arasında ilişki olduğunu düşündürmektedir. Son yıllarda bu hastalık grubunda moleküler olaylar daha iyi anlaşılmıştır. Buna rağmen bu mutasyonların MPN'ye özgü olmadıkları bilinmektedir. Bundan yola çıkarak MPN gelişimine katkıda bulunan tanımlanmamış genetik olayların varlığı düşünülmektedir. Bu derlemede, MPN patogenezinde genetik ve epigenetik anormalliklerinin rolü hakkında güncel veri özetlenmiştir.



PDF View

References

  • 1. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009;114(5):937-51. doi: 10.1182/blood-2009-03-209262. google scholar
  • 2. James C, Ugo V, Le Couédic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005;434(7037):1144-8. google scholar
  • 3. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352(17):1779-90. google scholar
  • 4. Levine RL, Wernig G. Role of JAK-STAT signaling in the pathogenesis of myeloproliferative disorders. Hematology Am Soc Hematol Educ Program 2006;233-9, 510. google scholar
  • 5. Lambert JR, Everington T, Linch DC, Gale RE. In essential thrombocythemia, multiple JAK2-V617F clones are present in most mutant-positive patients: a new disease paradigm. Blood 2009;114(14):3018-23. doi: 10.1182/blood-2009-03-209916. google scholar
  • 6. Tefferi A, Lasho TL, Huang J, et al. Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival. Leukemia 2008;22(4):756-61. doi: 10.1038/sj.leu.2405097. google scholar
  • 7. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007;356(5):459-68. google scholar
  • 8. Pietra D, Li S, Brisci A, et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood 2008;111(3):1686-9. google scholar
  • 9. Passamonti F, Elena C, Schnittger S, et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood 2011;117(10):2813-6. doi: 10.1182/blood-2010-11-316810. google scholar
  • 10.Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270. PLoS Med 2006;3(7):e270. google scholar
  • 11.Beer PA, Campbell PJ, Scott LM, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 2008;112(1):141-9. doi: 10.1182/blood-2008-01-131664. google scholar
  • 12.Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006;108(10):3472-6. google scholar
  • 13.Lieu CH, Shen YJ, Lai WC, Tsai WH, Hsu HC. Prevalence of MPL W515L/K mutations in Taiwanese patients with Philadelphia-negative chronic myeloproliferative neoplasms. J Chin Med Assoc 2010;73(10):530-2. doi: 10.1016/S1726-4901(10)70115-5. google scholar
  • 14.Ruan GR, Jiang B, Li LD, et al. MPL W515L/K mutations in 343 Chinese adults with JAK2V617F mutation-negative chronic myeloproliferative disorders detected by a newly developed RQ-PCR based on TaqMan MGB probes. Hematol Oncol 2010;28(1):33-9. doi: 10.1002/hon.899. google scholar
  • 15.Ma W, Zhang X, Wang X, et al. MPL mutation profile in JAK-2 mutation-negative patients with myeloproliferative disorders. Diagn Mol Pathol 2011;20(1):34-9. doi: 10.1097/PDM.0b013e3181ecd261. google scholar
  • 16.Schnittger S, Bacher U, Haferlach C, et al. Characterization of 35 new cases with four different MPL W515 mutations and essential thrombocytosis or primary myelofibrosis. Haematologica. 2009;94(1):141-4. doi: 10.3324/haematol.13224. google scholar
  • 17.Tong W, Zhang J, Lodish HF. Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood 2005;105(12):4604-12. google scholar
  • 18. Gery S, Cao Q, Gueller S, Xing H, Tefferi A, Koeffler HP. Lnk inhibits myeloproliferative disorder-associated JAK2 mutant, JAK2V617F. J Leukoc Biol 2009;85(6):957-65. doi: 10.1189/jlb.0908575. google scholar
  • 19.Gery S, Gueller S, Chumakova K, Kawamata N, Liu L, Koeffler HP. Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders. Blood. 2007;110(9):3360-4. google scholar
  • 20.Pardanani A, Lasho T, Finke C, Oh ST, Gotlib J, Tefferi A. LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations. Leukemia 2010;24(10):1713-8. doi: 10.1038/leu.2010.163. google scholar
  • 21.Gery S, Gueller S, Nowak V, Sohn J, Hofmann WK, Koeffler HP. Expression of the adaptor protein Lnk in leukemia cells. Exp Hematol 2009;37(5):585-592.e2. doi: 10.1016/j.exphem.2009.01.009. google scholar
  • 22.Jäger R, Gisslinger H, Passamonti F, et al. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia 2010;24(7):1290-8. doi: 10.1038/leu.2010.99. google scholar
  • 23.Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell 2007;128(4):735-45. google scholar
  • 24. Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010;42(8):722-6. doi: 10.1038/ng.621. google scholar
  • 25.Kleer CG. Carcinoma of the breast with medullary-like features: diagnostic challenges and relationship with BRCA1 and EZH2 functions. Arch Pathol Lab Med 2009;133(11):1822-5. doi: 10.1043/1543-2165-133.11.1822. google scholar
  • 26.Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov 2007;6:541-55. google scholar
  • 27.Parikh C, Subrahmanyam R, Ren R. Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice. Blood 2006;108(7):2349-57. google scholar
  • 28.Wang J, Liu Y, Li Z, et al. Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood 2010;116(26):5991-6002. doi: 10.1182/blood-2010-04-281527. google scholar
  • 29.Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007;26(22):3291-310. google scholar
  • 30.Ayllon V, Rebollo A. Ras-induced cellular events (review). Mol Membr Biol 2000;17(2):65-73. google scholar
  • 31.Scheele JS, Ripple D, Lubbert M. The role of ras and other low molecular weight guanine nucleotide (GTP)-binding proteins during hematopoietic cell differentiation. Cell Mol Life Sci, 2000;57(13-14):1950-63. google scholar
  • 32.Shounan Y, MacKenzie K, Dolnikov A, Miller M, Symonds G. Myeloproliferative disease and myelodysplastic syndrome induced by transplantation of bone marrow cells expressing mutant p53. Leukemia, 1997;11(10):1641-9. google scholar
  • 33.Harutyunyan A, Klampfl T, Cazzola M, Kralovics R. p53 lesions in leukemic transformation. N Engl J Med, 2011;364(5):488-90 doi: 10.1056/NEJMc1012718. google scholar
  • 34.Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009 May 15;324(5929):930-5. doi: 10.1126/science.1170116. google scholar
  • 35.Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010;466(7310):1129-33. doi: 10.1038/nature09303. google scholar
  • 36.Ficz G, Branco MR, Seisenberger S, et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011;473(7347):398-402. doi: 10.1038/nature10008. google scholar
  • 37.Tefferi A, Lim KH, Abdel-Wahab O, et al. Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia 2009;23(7):1343-5. doi: 10.1038/leu.2009.59. google scholar
  • 38.Langemeijer SM, Kuiper RP, Berends M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 2009;41(7):838-42. doi: 10.1038/ng.391. google scholar
  • 39.Jankowska AM, Szpurka H, Tiu RV, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 2009;113(25):6403-10. doi: 10.1182/blood-2009-02-205690. google scholar
  • 40.Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009;360(22):2289-301. doi: 10.1056/NEJMoa0810069. google scholar
  • 41.Abdel-Wahab O, Mullally A, Hedvat C, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 2009;114(1):144-7. doi: 10.1182/blood-2009-03-210039. google scholar
  • 42.Pronier E, Almire C, Mokrani H, et al. Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors. Blood 2011;118(9):2551-5. doi: 10.1182/blood-2010-12-324707. google scholar
  • 43.Pronier E, Delhommeau F. Role of TET2 mutations in myeloproliferative neoplasms. Curr Hematol Malig Rep 2012;7(1):57-64 doi: 10.1007/s11899-011-0108-8. google scholar
  • 44.Gaebler C, Stanzl-Tschegg S, Heinze G, et al. Fatigue strength of locking screws and prototypes used in small-diameter tibial nails: a biomechanical study. J Trauma 1999;47(2):379-84 google scholar
  • 45.Sinclair DA, Milne TA, Hodgson JW, et al. The Additional sex combs gene of Drosophila encodes a chromatin protein that binds to shared and unique Polycomb group sites on polytene chromosomes. Development 1998;125(7):1207-16 google scholar
  • 46.Fisher CL, Lee I, Bloyer S, et al. Additional sex combs-like 1 belongs to the enhancer of trithorax and polycomb group and genetically interacts with Cbx2 in mice. Dev Biol 2010;337(1):9-15 doi: 10.1016/j.ydbio.2009.10.004 google scholar
  • 47.Park UH, Yoon SK, Park T, Kim EJ, Um SJ. Additional sex comb-like (ASXL) proteins 1 and 2 play opposite roles in adipogenesis via reciprocal regulation of peroxisome proliferator-activated receptor {gamma}. J Biol Chem 2011;286(2):1354-63. doi: 10.1074/jbc.M110.177816. google scholar
  • 48. Fisher CL, Pineault N, Brookes C, et al. Loss-of-function Additional sex combs like 1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or leukemia. Blood 2010;115(1):38-46. doi: 10.1182/blood-2009-07-230698. google scholar
  • 49.Aravind L, Iyer LM. The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle 2012;11(1):119-31. doi: 10.4161/cc.11.1.18475. google scholar
  • 50.Scheuermann JC, de Ayala Alonso AG, Oktaba K, et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 2010;465(7295):243-7. doi: 10.1038/nature08966. google scholar
  • 51.Gelsi-Boyer V, Trouplin V, Adélaïde J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol 2009;145(6):788-800. doi: 10.1111/j.1365-2141.2009.07697.x. google scholar
  • 52.Carbuccia N, Murati A, Trouplin V, et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia 2009;23(11):2183-6. doi: 10.1038/leu.2009.141. google scholar
  • 53.Carbuccia N, Trouplin V, Gelsi-Boyer V, et al. Mutual exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias. Leukemi 2010;24(2):469-73. doi: 10.1038/leu.2009.218. google scholar
  • 54.Boultwood J, Perry J, Pellagatti A, et al. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia 2010;24(5):1062-5. doi: 10.1038/leu.2010.20. google scholar
  • 55.Abdel-Wahab O, Manshouri T, Patel J, et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res 2010;70(2):447-52. doi: 10.1158/0008-5472.CAN-09-3783. google scholar
  • 56.Abdel-Wahab O, Pardanani A, Patel J, et al. Concomitant analysis of EZH2 and ASXL1mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia 2011;25(7):1200-2. doi: 10.1038/leu.2011.58. google scholar
  • 57.Brecqueville M, Rey J, Bertucci F, et al. Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms. Genes Chromosomes Cancer 2012;51(8):743-55. doi: 10.1002/gcc.21960. google scholar
  • 58.Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013;27(9):1861-9. doi: 10.1038/leu.2013.119. google scholar
  • 59.Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360(8):765-73. doi: 10.1056/NEJMoa0808710. google scholar
  • 60.Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009;361(11):1058-66. doi: 10.1056/NEJMoa0903840. google scholar
  • 61.Tefferi A, Lasho TL, Abdel-Wahab O, et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia 2010;24(7):1302-9. doi: 10.1038/leu.2010.113. google scholar
  • 62.Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 2010;28(22):3636-43. doi: 10.1200/JCO.2010.28.3762. google scholar
  • 63.Thol F, Weissinger EM, Krauter J, et al. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica 2010;95(10):1668-74. doi: 10.3324/haematol.2010.025494. google scholar
  • 64.Kosmider O, Gelsi-Boyer V, Slama L, et al. Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia 2010;24(5):1094-6. doi: 10.1038/leu.2010.52. google scholar
  • 65.Plaut GW, Cook M, Aogaichi T. The subcellular location of isozymes of NADP-isocitrate dehydrogenase in tissues from pig, ox and rat. Biochim Biophys Acta 1983;760(2):300-8. google scholar
  • 66. Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2010;465(7300):966. doi: 10.1038/nature09132. google scholar
  • 67.Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010;17(3):225-34. doi: 10.1016/j.ccr.2010.01.020. google scholar
  • 68.Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol 2011;29(5):504-15. doi: 10.1200/JCO.2010.31.1175. google scholar
  • 69.Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009;324(5924):261-5. doi: 10.1126/science.1170944. google scholar
  • 70.Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009;462(7274):739-44. doi: 10.1038/nature08617. google scholar
  • 71.Gross S, Cairns RA, Minden MD, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 2010;207(2):339-44. doi: 10.1084/jem.20092506. google scholar
  • 72.Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010;18(6):553-67. doi: 10.1016/j.ccr.2010.11.015. google scholar
  • 73.Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321(5897):1807-12. doi: 10.1126/science.1164382. google scholar
  • 74.Chou WC, Lei WC, Ko BS, et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia 2011;25(2):246-53. doi: 10.1038/leu.2010.267. google scholar
  • 75.Boissel N, Nibourel O, Renneville A, et al. Prognostic impact of isocitrate dehydrogenase enzyme isoforms 1 and 2 mutations in acute myeloid leukemia: a study by the Acute Leukemia French Association group. J Clin Oncol 2010;28(23):3717-23. doi: 10.1200/JCO.2010.28.2285. google scholar
  • 76.Abbas S, Lugthart S, Kavelaars FG, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 2010;116(12):2122-6. doi: 10.1182/blood-2009-11-250878. google scholar
  • 77.Pardanani A, Patnaik MM, Lasho TL, et al. Recurrent IDH mutations in high-risk myelodysplastic syndrome or acute myeloid leukemia with isolated del(5q). Leukemia 2010;24(7):1370-2. doi: 10.1038/leu.2010.98. google scholar
  • 78.Soverini S, Score J, Iacobucci I, et al. IDH2 somatic mutations in chronic myeloid leukemia patients in blast crisis. Leukemia 2011;25(1):178-81. doi: 10.1038/leu.2010.236. google scholar
  • 79.Caramazza D, Lasho TL, Finke CM, et al. IDH mutations and trisomy 8 in myelodysplastic syndromes and acute myeloid leukemia. Leukemia 2010;24(12):2120-2. doi: 10.1038/leu.2010.213. google scholar
  • 80.Thol F, Damm F, Wagner K, et al. Prognostic impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia. Blood 2010;116(4):614-6. doi: 10.1182/blood-2010-03-272146. google scholar
  • 81.Schnittger S, Haferlach C, Ulke M, Alpermann T, Kern W, Haferlach T. IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood 2010;116(25):5486-96. doi: 10.1182/blood-2010-02-267955. google scholar
  • 82.Green CL, Evans CM, Hills RK, Burnett AK, Linch DC, Gale RE. The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status. Blood 2010;116(15):2779-82. doi: 10.1182/blood-2010-02-270926. google scholar
  • 83. Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010;28(14):2348-55. doi: 10.1200/JCO.2009.27.3730. google scholar
  • 84.Wagner K, Damm F, Göhring G, et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol 2010;28(14):2356-64. doi: 10.1200/JCO.2009.27.6899. google scholar
  • 85.Green CL, Evans CM, Zhao L, et al. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood 2011;118(2):409-12. doi: 10.1182/blood-2010-12-322479. google scholar
  • 86.Tefferi A, Jimma T, Sulai NH, et al. IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F. Leukemia 2012;26(3):475-80. doi: 10.1038/leu.2011.253. google scholar
  • 87.Gold LI, Eggleton P, Sweetwyne MT, Van Duyn LB, Greives MR, Naylor SM, et al. Calreticulin:non-endoplasmic reticulum functions in physiology and disease. FASEB J. 2010;24:665-83. google scholar
  • 88.Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391-2405. google scholar
  • 89.Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379-90. google scholar
  • 90.Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, et al; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123:1544-51. google scholar
  • 91.Kim SY, Im K, Park SN, Kwon J, Kim JA, Lee DS. CALR, JAK2, and MPL Mutation Profiles in Patients With Four Different Subtypes of Myeloproliferative Neoplasms: Primary Myelofibrosis, Essential Thrombocythemia, Polycythemia Vera, and Myeloproliferative Neoplasm, Unclassifiable. Am J Clin Pathol. 2015 May;143(5):635-44. google scholar
  • 92.Rotunno G, Mannarelli C, Guglielmelli P, et al. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood. 2014;123(10):1552-1555. google scholar
  • 93.Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472-1477. google scholar
  • 94. Michiels JJ, Forstier K, Valster F, Potters V, Schelfout K, De Raeve H. 2014 WHO Clinical Molecular and Pathological (WHO-CMP) Diagnostic Criteria for the Classification and Staging of Five Distinct JAK2, MPL and CALR Mutated Myeloproliferative Neoplasms. J Hematol Thromb Dis 2:172. doi:10.4172/2329-8790.1000172 google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Yönal Hindilerden, İ., Hindilerden, F., & Sargın, F.D. (2015). The impact of molecular events on myeloproliferative neoplasms.. Journal of Istanbul Faculty of Medicine, 78(4), 125-136. https://doi.org/https://doi.org/10.18017/iuitfd.34130


AMA

Yönal Hindilerden İ, Hindilerden F, Sargın F D. The impact of molecular events on myeloproliferative neoplasms.. Journal of Istanbul Faculty of Medicine. 2015;78(4):125-136. https://doi.org/https://doi.org/10.18017/iuitfd.34130


ABNT

Yönal Hindilerden, İ.; Hindilerden, F.; Sargın, F.D. The impact of molecular events on myeloproliferative neoplasms.. Journal of Istanbul Faculty of Medicine, [Publisher Location], v. 78, n. 4, p. 125-136, 2015.


Chicago: Author-Date Style

Yönal Hindilerden, İpek, and Fehmi Hindilerden and Fatma Deniz Sargın. 2015. “The impact of molecular events on myeloproliferative neoplasms..” Journal of Istanbul Faculty of Medicine 78, no. 4: 125-136. https://doi.org/https://doi.org/10.18017/iuitfd.34130


Chicago: Humanities Style

Yönal Hindilerden, İpek, and Fehmi Hindilerden and Fatma Deniz Sargın. The impact of molecular events on myeloproliferative neoplasms..” Journal of Istanbul Faculty of Medicine 78, no. 4 (Jun. 2024): 125-136. https://doi.org/https://doi.org/10.18017/iuitfd.34130


Harvard: Australian Style

Yönal Hindilerden, İ & Hindilerden, F & Sargın, FD 2015, 'The impact of molecular events on myeloproliferative neoplasms.', Journal of Istanbul Faculty of Medicine, vol. 78, no. 4, pp. 125-136, viewed 12 Jun. 2024, https://doi.org/https://doi.org/10.18017/iuitfd.34130


Harvard: Author-Date Style

Yönal Hindilerden, İ. and Hindilerden, F. and Sargın, F.D. (2015) ‘The impact of molecular events on myeloproliferative neoplasms.’, Journal of Istanbul Faculty of Medicine, 78(4), pp. 125-136. https://doi.org/https://doi.org/10.18017/iuitfd.34130 (12 Jun. 2024).


MLA

Yönal Hindilerden, İpek, and Fehmi Hindilerden and Fatma Deniz Sargın. The impact of molecular events on myeloproliferative neoplasms..” Journal of Istanbul Faculty of Medicine, vol. 78, no. 4, 2015, pp. 125-136. [Database Container], https://doi.org/https://doi.org/10.18017/iuitfd.34130


Vancouver

Yönal Hindilerden İ, Hindilerden F, Sargın FD. The impact of molecular events on myeloproliferative neoplasms.. Journal of Istanbul Faculty of Medicine [Internet]. 12 Jun. 2024 [cited 12 Jun. 2024];78(4):125-136. Available from: https://doi.org/https://doi.org/10.18017/iuitfd.34130 doi: https://doi.org/10.18017/iuitfd.34130


ISNAD

Yönal Hindilerden, İpek - Hindilerden, Fehmi - Sargın, FatmaDeniz. The impact of molecular events on myeloproliferative neoplasms.”. Journal of Istanbul Faculty of Medicine 78/4 (Jun. 2024): 125-136. https://doi.org/https://doi.org/10.18017/iuitfd.34130



Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.