Spinal cord injury: pathogenetic principles of molecular and cellular therapy

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Spinal cord injury is a prognostically unfavorable condition due to the subsequent development of primary and secondary damage to the nervous structures, leading to various disorders of motor and sensory capabilities, which is also accompanied by dysfunction of the autonomic nervous system. Considering the initial complexities of regeneration processes in the central nervous system, in order to select treatment tactics for patients with spinal cord injury, it is important for doctors to know the cellular basis of the pathophysiological processes occurring in the spinal cord in the acute and chronic phases after injury, including in order to adequately select cells-targets of pharmacological drugs. Existing methods of treating neurotrauma can still do little to help prevent the death of neurons and the formation of glial scars, which make it impossible for the migration of cells involved in the processes of post-traumatic remodeling of the spinal cord and become an obstacle to the sprouting of regenerating axons. Unfortunately, preventing the formation of a glial scar remains an unsolved problem in clinical practice. In addition, in the case of spinal cord injuries in the clinic, it is extremely important to provide humoral stimulation to maintain the viability of nerve structures, for example, using numerous growth factors that are well known today, which have a beneficial effect on the intracellular regeneration of neurons and other cells involved in these processes, but the methodology for their delivery into the central nervous system has only been tested in animal models. That is why there is an urgent need to develop fundamentally new approaches to the treatment of the consequences of spinal cord injury, including cellular technologies based on transplantation of stem or differentiated cells in order to restore nerve structures and secretion of growth factors, the use of genetic constructs carrying genes for neurotrophic factors that can minimize development of post-traumatic destructive processes in the central nervous system. This review is devoted to these issues.

Full Text

Restricted Access

About the authors

Ravil R. Garifulin

Kazan State Medical University

Email: ravil.garifulin@kazangmu.ru
ORCID iD: 0000-0002-6503-2316
SPIN-code: 8115-3650

Postgrad. Stud., Depart. of Histology, Cytology and Embryology

Russian Federation, Kazan

Andrei A. Izmailov

Kazan State Medical University

Author for correspondence.
Email: andrei.izmaylov@kazangmu.ru
ORCID iD: 0000-0002-8128-4636

MD, Cand. Sci. (Med), Assistant, Depart. of Histology, Cytology and Embryology

Russian Federation, Kazan

Natalia V. Boychuk

Kazan State Medical University

Email: nboychuck@yandex.ru
ORCID iD: 0009-0000-7619-0750
SPIN-code: 1549-2439

Cand. Sci. (Biol.), Assoc. Prof., Depart. of Histology, Cytology and Embryology

Russian Federation, Kazan

Maria V. Nigmetzyanova

Kazan State Medical University

Email: marianigmetzanova@yandex.ru
ORCID iD: 0009-0005-6731-4041
SPIN-code: 4036-5495

Cand. Sci. (Biol.), Assoc. Prof., Depart. of Histology, Cytology and Embryology

Russian Federation, Kazan

Victor V. Valiullin

Kazan State Medical University

Email: valiullinvv@yandex.ru
ORCID iD: 0000-0002-6030-6373
SPIN-code: 7170-4257

D. Sci. (Biol.), Prof., Depart. of Histology, Cytology and Embryology

Russian Federation, Kazan

References

  1. Benedetti B, Weidenhammer A, Reisinger M, Couillard-Despres S. Spinal cord injury and loss of cortical inhibition. Int J Mol Sci. 2022;23(10):5622. doi: 10.3390/ijms23105622
  2. Venkatesh K, Ghosh SK, Mullick M, Manivasagam G, Sen D. Spinal cord injury: Pathophysiology, treatment strategies, associated challenges, and future implications. Cell Tissue Res. 2019;377(2):125–151. doi: 10.1007/s00441-019-03039-1
  3. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019;10:282. doi: 10.3389/fneur.2019.00282
  4. Zheng B, Tuszynski MH. Regulation of axonal regeneration after mammalian spinal cord injury. Nat Rev Mol Cell Biol. 2023;24(6):396–413. doi: 10.1038/s41580-022-00562-y
  5. Khan FI, Ahmed Z. Experimental treatments for spinal cord injury: A systematic review and meta-analysis. Cells. 2022;11(21):3409. doi: 10.3390/cells11213409
  6. Khorasanizadeh M, Yousefifard M, Eskian M, Lu Y, Chalangari M, Harrop JS, Jazayeri SB, Seyedpour S, Khodaei B, Hosseini M, Rahimi-Movaghar V. Neurological recovery following traumatic spinal cord injury: A systematic review and meta-analysis. J Neurosurg Spine. 2019;1–17. doi: 10.3171/2018.10.SPINE18802
  7. Elliott CS, Dallas KB, Zlatev D, Comiter CV, Crew J, Shem K. Volitional voiding of the bladder after spinal cord injury: Validation of bilateral lower extremity motor function as a key predictor. J Urol. 2018;200(1):154–160. doi: 10.1016/j.juro.2018.02.064
  8. Novoselova IN. Etiology and clinical epidemiology of spinal cord injury. Literature review. Russian neurosurgical journal named after professor AL Polenov. 2019;11(4):84–92. (In Russ.)
  9. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3:17018. doi: 10.1038/nrdp.2017.18
  10. Van Middendorp JJ, Goss B, Urquhart S, Atresh S, Williams RP, Schuetz M. Diagnosis and prognosis of traumatic spinal cord injury. Global Spine J. 2011;1(1):1–8. doi: 10.1055/s-0031-1296049
  11. Roberts TT, Leonard GR, Cepela DJ. Classifications in brief: American spinal injury association (ASIA) impairment scale. Clin Orthop Relat Res. 2017;475(5):1499–1504. doi: 10.1007/s11999-016-5133-4
  12. Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK, Lokanathan Y. Spinal cord injury: Pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020;21(20):7533. doi: 10.3390/ijms21207533
  13. Zhang Y, Al Mamun A, Yuan Y, Lu Q, Xiong J, Yang S, Wu C, Wu Y, Wang J. Acute spinal cord injury: Pathophysiology and pharmacological intervention (review). Mol Med Rep. 2021;23(6):417. doi: 10.3892/mmr.2021.12056
  14. Shafqat A, Albalkhi I, Magableh HM, Saleh T, Alkattan K, Yaqinuddin A. Tackling the glial scar in spinal cord regeneration: New discoveries and future directions. Front Cell Neurosci. 2023;17:1180825. doi: 10.3389/fncel.2023.1180825
  15. Gradisnik L, Velnar T. Astrocytes in the central nervous system and their functions in health and disease: A review. World J Clin Cases. 2023;11(15):3385–3394. doi: 10.12998/wjcc.v11.i15.3385
  16. Giovannoni F, Quintana FJ. The role of astrocytes in CNS inflammation. Trends Immunol. 2020;41(9):805–819. doi: 10.1016/j.it.2020.07.007
  17. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25. doi: 10.1016/j.nbd.2009.07.030
  18. Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y. Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci Res. 2018;126:39–43. doi: 10.1016/j.neures.2017.10.004
  19. Sofroniew MV, Vinters HV. Astrocytes: Biology and pathology. Acta Neuropathol. 2010;119(1):7–35. doi: 10.1007/s00401-009-0619-8
  20. Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhäuser C, Volterra A, Carmignoto G, Agarwal A, Allen NJ, Araque A, Barbeito L, Barzilai A, Bergles DE, Bonvento G, Butt AM, Chen W-T, Cohen-Salmon M, Cunningham C, Deneen B, De Strooper B, Díaz-Castro B, Farina C, Freeman M, Gallo V, Goldman JE, Goldman SA, Götz M, Gutiérrez A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M, Kastanenka KV, Kettenmann H, Khakh BS, Koizumi S, Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Messing A, Mishra A, Molofsky AV, Murai KK, Norris CM, Okada S, Oliet SHR, Oliveira JF, Panatier A, Parpura V, Pekna M, Pekny M, Pellerin L, Perea G, Pérez-Nievas BG, Pfrieger FW, Poskanzer KE, Quintana FJ, Ransohoff RM, Riquelme-Perez M, Robel S, Rose CR, Rothstein JD, Rouach N, Rowitch DH, Semyanov A, Sirko S, Sontheimer H, Swanson RA, Vitorica J, Wanner I-B, Wood LB, Wu J, Zheng B, Zimmer ER, Zorec R, Sofroniew MV, Verkhratsky A. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24(3):312–325. doi: 10.1038/s41593-020-00783-4
  21. Gaudet AD, Fonken LK. Glial cells shape pathology and repair after spinal cord injury. Neurotherapeutics. 2018;15(3):554–577. doi: 10.1007/s13311-018-0630-7
  22. Li X, Li M, Tian L, Chen J, Liu R, Ning B. Reactive astrogliosis: Implications in spinal cord injury progression and therapy. Oxid Med Cell Longev. 2020;2020:9494352. doi: 10.1155/2020/9494352
  23. Sonn I, Nakamura M, Renault-Mihara F, Okano H. Polarization of reactive astrocytes in response to spinal cord injury is enhanced by M2 macrophage-mediated activation of Wnt/β-catenin pathway. Mol Neurobiol. 2020;57(4):1847–1862. doi: 10.1007/s12035-019-01851-y
  24. Wang R, Zhou R, Chen Z, Gao S, Zhou F. The glial cells respond to spinal cord injury. Front Neurol. 2022;13:844497. doi: 10.3389/fneur.2022.844497
  25. O’Shea TM, Burda JE, Sofroniew MV. Cell biology of spinal cord injury and repair. J Clin Invest. 2017;127(9):3259–3270. doi: 10.1172/JCI90608
  26. Yang T, Dai Y, Chen G, Cui S. Dissecting the dual role of the glial scar and scar-forming astrocytes in spinal cord injury. Front Cell Neurosci. 2020;14:78. doi: 10.3389/fncel.2020.00078
  27. Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol. 2014;32:367–402. doi: 10.1146/annurev-immunol-032713-120240
  28. Kolos EA, Korzhevsky DE. Spinal cord microglia in health and disease. Acta Naturae. 2020;12(1):4–17. doi: 10.32607/actanaturae.10934
  29. Abe N, Nishihara T, Yorozuya T, Tanaka J. Microglia and macrophages in the pathological central and peripheral nervous systems. Cells. 2020;9(9):2132. doi: 10.3390/cells9092132
  30. Kroner A, Rosas Almanza J. Role of microglia in spinal cord injury. Neurosci Lett. 2019;709:134370. doi: 10.1016/j.neulet.2019.134370
  31. Fan B, Wei Z, Yao X, Shi G, Cheng X, Zhou X, Zhou H, Ning G, Kong X, Feng S. Microenvironment imbalance of spinal cord injury. Cell Transplant. 2018;27(6):853–866. doi: 10.1177/0963689718755778
  32. Lukacova N, Kisucka A, Kiss Bimbova K, Bacova M, Ileninova M, Kuruc T, Galik J. Glial-neuronal interactions in pathogenesis and treatment of spinal cord injury. Int J Mol Sci. 2021;22(24):13577. doi: 10.3390/ijms222413577
  33. Andoh M, Koyama R. Comparative review of microglia and monocytes in CNS phagocytosis. Cells. 2021;10(10):2555. doi: 10.3390/cells10102555
  34. Zhou X, He X, Ren Y. Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Regen Res. 2014;9(20):1787–1795. doi: 10.4103/1673-5374.143423
  35. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J. Microglial and macrophage polarization — new prospects for brain repair. Nat Rev Neurol. 2015;11(1):56–64. doi: 10.1038/nrneurol.2014.207
  36. Bergles DE, Richardson WD. Oligodendrocyte development and plasticity. Cold Spring Harb Perspect Biol. 2015;8(2):a020453. doi: 10.1101/cshperspect.a020453
  37. Alizadeh A, Karimi-Abdolrezaee S. Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury. J Physiol. 2016;594(13):3539–3552. doi: 10.1113/JP270895
  38. Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK, Tetzlaff W. Remyelination after spinal cord injury: Is it a target for repair? Prog Neurobiol. 2014;117:54–72. doi: 10.1016/j.pneurobio.2014.02.006
  39. Deng S, Gan L, Liu C, Xu T, Zhou S, Guo Y, Zhang Z, Yang G-Y, Tian H, Tang Y. Roles of ependymal cells in the physiology and pathology of the central nervous system. Aging Dis. 2023;14(2):468–483. doi: 10.14336/AD.2022.0826-1
  40. Moore SA. The spinal ependymal layer in health and disease. Vet Pathol. 2016;53(4):746–753. doi: 10.1177/0300985815618438
  41. Fernandez-Zafra T, Codeluppi S, Uhlén P. An ex vivo spinal cord injury model to study ependymal cells in adult mouse tissue. Exp Cell Res. 2017;357(2):236–242. doi: 10.1016/j.yexcr.2017.06.002
  42. Meletis K, Barnabé-Heider F, Carlén M, Evergren E, Tomilin N, Shupliakov O, Frisén J. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 2008;6(7):e182. doi: 10.1371/journal.pbio.0060182
  43. Zhang Y, Yang S, Liu C, Han X, Gu X, Zhou S. Deciphering glial scar after spinal cord injury. Burns Trauma. 2021;9:tkab035. doi: 10.1093/burnst/tkab035
  44. Dromard C, Guillon H, Rigau V, Ripoll C, Sabourin JC, Perrin FE, Scamps F, Bozza S, Sabatier P, Lonjon N, Duffau H, Vachiery-Lahaye F, Prieto M, Tran Van Ba C, Deleyrolle L, Boularan A, Langley K, Gaviria M, Privat A, Hugnot JP, Bauchet L. Adult human spinal cord harbors neural precursor cells that generate neurons and glial cells in vitro. J Neurosci Res. 2008;86(9):1916–1926. doi: 10.1002/jnr.21646
  45. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359(6372):eaan4672. doi: 10.1126/science.aan4672
  46. Izmailov AA, Sokolov ME, Bashirov FV, Fadeev FO, Markosyan VA, Garifulin RR, Lisyukov AN, Kuznetsov MS, Islamov RR. Comparative analysis of efficiency of direct and cell-mediated gene therapy of rats with contusion spinal cord injury. Genes & Cells. 2017;12(4):53–59. (In Russ.) doi: 10.23868/201707030
  47. Boyce VS, Mendell LM. Neurotrophic factors in spinal cord injury. Handb Exp Pharmacol. 2014;220:443–460. doi: 10.1007/978-3-642-45106-5_16
  48. Keefe KM, Sheikh IS, Smith GM. Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. Int J Mol Sci. 2017;18(3):548. doi: 10.3390/ijms18030548
  49. Harvey AR, Lovett SJ, Majda BT, Yoon JH, Wheeler LPG, Hodgetts SI. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time? Brain Res. 2015;1619:36–71. doi: 10.1016/j.brainres.2014.10.049
  50. Muheremu A, Shu L, Liang J, Aili A, Jiang K. Sustained delivery of neurotrophic factors to treat spinal cord injury. Transl Neurosci. 2021;12(1):494–511. doi: 10.1515/tnsci-2020-0200
  51. Liang J, Deng G, Huang H. The activation of BDNF reduced inflammation in a spinal cord injury model by TrkB/p38 MAPK signaling. Exp Ther Med. 2019;17(3):1688–1696. doi: 10.3892/etm.2018.7109
  52. Gliwińska A, Czubilińska-Łada J, Więckiewicz G, Świętochowska E, Badeński A, Dworak M, Szczepańska M. The role of brain-derived neurotrophic factor (BDNF) in diagnosis and treatment of epilepsy, depression, schizophrenia, anorexia nervosa and Alzheimer’s disease as highly drug-resistant diseases: A narrative review. Brain Sci. 2023;13(2):163. doi: 10.3390/brainsci13020163
  53. Deznabi N, Hosseini S, Rajabi M. Neurotrophic factors-based therapeutic strategies in the spinal cord injury: An overview of recent preclinical studies in rodent models. Egypt J Neurol Psychiatry Neurosurg. 2023;59(1):63. doi: 10.1186/s41983-023-00661-3
  54. Han Q, Xu XM. Neurotrophin-3-mediated locomotor recovery: A novel therapeutic strategy targeting lumbar neural circuitry after spinal cord injury. Neural Regen Res. 2020;15(12):2241–2242. doi: 10.4103/1673-5374.284985
  55. Ortmann SD, Hellenbrand DJ. Glial cell line-derived neurotrophic factor as a treatment after spinal cord injury. Neural Regen Res. 2018;13(10):1733–1734. doi: 10.4103/1673-5374.238610
  56. Rosich K, Hanna BF, Ibrahim RK, Hellenbrand DJ, Hanna A. The effects of glial cell line-derived neurotrophic factor after spinal cord injury. J Neurotrauma. 2017;34(24):3311–3325. doi: 10.1089/neu.2017.5175
  57. Tsivelekas K, Evangelopoulos DS, Pallis D, Benetos IS, Papadakis SA, Vlamis J, Pneumaticos SG. Angiogenesis in spinal cord injury: Progress and treatment. Cureus. 2022;14(5):e25475. doi: 10.7759/cureus.25475
  58. Wang L, Shi Q, Dai J, Gu Y, Feng Y, Chen L. Increased vascularization promotes functional recovery in the transected spinal cord rats by implanted vascular endothelial growth factor-targeting collagen scaffold. J Orthop Res. 2018;36(3):1024–1034. doi: 10.1002/jor.23678
  59. Sundberg LM, Herrera JJ, Narayana PA. Effect of vascular endothelial growth factor treatment in experimental traumatic spinal cord injury: In vivo longitudinal assessment. J Neurotrauma. 2011;28(4):565–78. doi: 10.1089/neu.2010.1533
  60. Zhou Y, Wang Z, Li J, Li X, Xiao J. Fibroblast growth factors in the management of spinal cord injury. J Cell Mol Med. 2018;22(1):25–37. doi: 10.1111/jcmm.13353
  61. Allahdadi KJ, de Santana TA, Santos GC, Azevedo CM, Mota RA, Nonaka CK, Silva DN, Valim CXR, Figueira CP, Dos Santos WLC, do Espirito Santo RF, Evangelista AF, Villarreal CF, Dos Santos RR, de Souza BSF, Soares MBP. IGF-1 overexpression improves mesenchymal stem cell survival and promotes neurological recovery after spinal cord injury. Stem Cell Res Ther. 2019;10(1):146. doi: 10.1186/s13287-019-1223-z
  62. Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev. 2019;149–150:19–48. doi: 10.1016/j.addr.2019.03.004
  63. Xu D, Wu D, Qin M, Nih LR, Liu C, Cao Z, Ren J, Chen X, He Z, Yu W, Guan J, Duan S, Liu F, Liu X, Li J, Harley D, Xu B, Hou L, Chen ISY, Wen J, Chen W, Pourtaheri S, Lu Y. Efficient Delivery of Nerve Growth Factors to the Central Nervous System for Neural Regeneration. Adv Mater. 2019;31(33):e1900727. doi: 10.1002/adma.201900727
  64. Sosnovtseva AO, Stepanova OV, Stepanenko AA, Voronova AD, Chadin AV, Valikhov MP, Chekhonin VP. Recombinant adenoviruses for delivery of therapeutics following spinal cord injury. Front Pharmacol. 2021;12:777628. doi: 10.3389/fphar.2021.777628
  65. Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci. 2020;21(7):366–383. doi: 10.1038/s41583-020-0314-2
  66. Mahla RS. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol. 2016;2016:6940283. doi: 10.1155/2016/6940283
  67. Shinozaki M, Nagoshi N, Nakamura M, Okano H. Mechanisms of stem cell therapy in spinal cord injuries. Cells. 2021;10(10):2676. doi: 10.3390/cells10102676
  68. Reshamwala R, Shah M, St John J, Ekberg J. Survival and integration of transplanted olfactory ensheathing cells are crucial for spinal cord injury repair: Insights from the last 10 years of animal model studies. Cell Transplant. 2019;28(1):132S–159S. doi: 10.1177/0963689719883823
  69. Zhou P, Guan J, Xu P, Zhao J, Zhang C, Zhang B, Mao Y, Cui W. Cell therapeutic strategies for spinal cord injury. Adv Wound Care (New Rochelle). 2019;8(11):585–605. doi: 10.1089/wound.2019.1046
  70. El-Kadiry AEH, Rafei M, Shammaa R. Cell therapy: Types, regulation, and clinical benefits. Front Med (Lausanne). 2021;8:756029. doi: 10.3389/fmed.2021.756029
  71. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther. 2019;10:68. doi: 10.1186/s13287-019-1165-5
  72. Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative therapies for spinal cord injury. Tissue Eng Part B Rev. 2019;25(6):471–491. doi: 10.1089/ten.TEB.2019.0182
  73. Guo W, Zhang X, Zhai J, Xue J. The roles and applications of neural stem cells in spinal cord injury repair. Front Bioeng Biotechnol. 2022;10:966866. doi: 10.3389/fbioe.2022.966866
  74. De Freria CM, Van Niekerk E, Blesch A, Lu P. Neural stem cells: Promoting axonal regeneration and spinal cord connectivity. Cells. 2021;10(12):3296. doi: 10.3390/cells10123296
  75. Yamazaki K, Kawabori M, Seki T, Houkin K. Clinical trials of stem cell treatment for spinal cord injury. Int J Mol Sci. 2020;21(11):3994. doi: 10.3390/ijms21113994
  76. Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D. Mesenchymal stem cells for spinal cord injury: Current options, limitations, and future of cell therapy. Int J Mol Sci. 2019;20(11):2698. doi: 10.3390/ijms20112698
  77. Kim GU, Sung SE, Kang KK, Choi J-H, Lee S, Sung M, Yang SY, Kim S-K, Kim YI, Lim J-H, Seo M-S, Lee GW. Therapeutic potential of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles for the treatment of spinal cord injury. Int J Mol Sci. 2021;22(24):13672. doi: 10.3390/ijms222413672
  78. Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX. Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci. 2020;10:112. doi: 10.1186/s13578-020-00475-3
  79. Sykova E, Cizkova D, Kubinova S. Mesenchymal stem cells in treatment of spinal cord injury and amyotrophic lateral sclerosis. Front Cell Dev Biol. 2021;9:695900. doi: 10.3389/fcell.2021.695900
  80. Monje PV, Deng L, Xu XM. Human schwann cell transplantation for spinal cord injury: Prospects and challenges in translational medicine. Front Cell Neurosci. 2021;15:690894. doi: 10.3389/fncel.2021.690894
  81. Fu H, Hu D, Chen J, Wang Q, Zhang Y, Qi C, Yu T. Repair of the injured spinal cord by schwann cell transplantation. Front Neurosci. 2022;16:800513. doi: 10.3389/fnins.2022.800513
  82. Ernst A, Frisén J. Adult neurogenesis in humans — common and unique traits in mammals. PLoS Biol. 2015;13(1):e1002045. doi: 10.1371/journal.pbio.1002045
  83. Ahuja CS, Mothe A, Khazaei M, Badhiwala JH, Gilbert EA, van der Kooy D, Morshead CM, Tator C, Fehlings MG. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med. 2020;9(12):1509–1530. doi: 10.1002/sctm.19-0135
  84. Hu XC, Lu YB, Yang YN, Kang X-W, Wang Y-G, Ma B, Xing S. Progress in clinical trials of cell transplantation for the treatment of spinal cord injury: How many questions remain unanswered? Neural Regen Res. 2021;16(3):405–413. doi: 10.4103/1673-5374.293130
  85. Ursavas S, Darici H, Karaoz E. Olfactory ensheathing cells: Unique glial cells promising for treatments of spinal cord injury. J Neurosci Res. 2021;99(6):1579–1597. doi: 10.1002/jnr.24817
  86. Xi Y, Yue G, Gao S, Ju R, Wang Y. Human umbilical cord blood mononuclear cells transplantation for perinatal brain injury. Stem Cell Res Ther. 2022;13(1):458. doi: 10.1186/s13287-022-03153-y
  87. Sanchez-Petitto G, Rezvani K, Daher M, Rafei H, Kebriaei P, Shpall EJ, Olson A. Umbilical cord blood transplantation: Connecting its origin to its future. Stem Cells Transl Med. 2023;12(2):55–71. doi: 10.1093/stcltm/szac086
  88. Ryabov SI, Zvyagintseva MA, Yadgarov MY, Bazanovich SA, Smirnov VA. Comparison of the efficiency of systemic and local cell therapy with human umbilical cord blood mononuclear cells in rats with severe spinal cord injury. Bull Exp Biol Med. 2020;168(4):552–555. doi: 10.1007/s10517-020-04751-7
  89. Zhu H, Poon W, Liu Y, Leung GK-K, Wong Y, Feng Y, Ng SCP, Tsang KS, Sun DTF, Yeung DK, Shen C, Niu F, Xu Z, Tan P, Tang S, Gao H, Cha Y, So K-F, Fleischaker R, Sun D, Chen J, Lai J, Cheng W, Young W. Phase I–II clinical trial assessing safety and efficacy of umbilical cord blood mononuclear cell transplant therapy of chronic complete spinal cord injury. Cell Transplant. 2016;25(11):1925–1943. doi: 10.3727/096368916X691411
  90. Smirnov VA, Radaev SM, Morozova YV, Ryabov SI, Yadgarov MY, Bazanovich SA, Lvov IS, Talypov AE, Grin’ AA. Systemic administration of allogeneic cord blood mononuclear cells in adults with severe acute contusion spinal cord injury: Phase 1/2a pilot clinical study — safety and primary efficacy evaluation. World Neurosurg. 2022;161:e319–38. doi: 10.1016/j.wneu.2022.02.004
  91. Liu J, Han D, Wang Z, Xue M, Zhu L, Yan H, Zheng X, Guo Z, Wang H. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy. 2013;15(2):185–91. doi: 10.1016/j.jcyt.2012.09.005
  92. Yao L, He C, Zhao Y, Wang J, Tang M, Li J, Wu Y, Ao L, Hu X. Human umbilical cord blood stem cell transplantation for the treatment of chronic spinal cord injury: Electrophysiological changes and long-term efficacy. Neural Regen Res. 2013;8(5):397–403. doi: 10.3969/j.issn.1673-5374.2013.05.002
  93. Islamov R, Bashirov F, Fadeev F, Shevchenko R, Izmailov A, Markosyan V, Sokolov M, Kuznetsov M, Davleeva M, Garifulin R, Salafutdinov I, Nurullin L, Chelyshev Y, Lavrov I. Epidural stimulation combined with triple gene therapy for spinal cord injury treatment. Int J Mol Sci. 2020;21(23):8896. doi: 10.3390/ijms21238896
  94. Islamov RR, Izmailov AA, Sokolov ME, Fadeev PO, Bashirov FV, Eremeev AA, Shaymardanova GF, Shmarov MM, Naroditskiy BS, Chelyshev YA, Lavrov IA, Palotás A. Evaluation of direct and cell-mediated triple-gene therapy in spinal cord injury in rats. Brain Res Bull. 2017;132:44–52. doi: 10.1016/j.brainresbull.2017.05.005

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2024 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies