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Abstract—Silicone rubber composite is a priority electrical
insulating material used in high-voltage outdoor insulation ap-
plications. Low electrical tracking/erosion and poor flame resis-
tance performance of silicone rubber once ignited, substantially
reduce its working life. This paper attempts to investigate
tracking/erosion performance of room temperature vulcanized
(RTV) silicone rubber along with flame retardant parameters
using aluminum trihydrate (ATH), graphene nanosheets (GN)
and milled glass fiber (GF) additives. The inclined plane test
(IPT) was performed in line with criteria defined in IEC 60587
using step-up tracking voltage method while flame retardancy is
evaluated according to ASTM E 1354.0 using a cone calorimeter.
Results suggest 30% of ATH assists in improving physical track-
ing/erosion resistance of pristine silicone elastomer rubber by
impeding development of leakage current and a great reduction in
maximum average temperatures on the surface of RTV2. Further
improvement in performance of RTV2 is achieved through
introduction of 1% of GN and 5% of GF as seen in RTV4.
Moreover, 30% of ATH reduces heat release rate and smoke
production rate, and this trend is improved with the introduction
of GN/GF. RTV4 has pop up as the most promising silicone
rubber composite with excellent electrical tracking, erosion, and
flame resistance performance relative to its counterparts in this
study.

Index Terms—Dry band arcing, electrical tracking, heat
release rate, leakage current, silicone rubber, smoke production
rate.
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I. INTRODUCTION

HYDROPHOBIC silicone rubber is widely engaged in
manufacturing of composite insulators and anti-pollution

coatings for high-voltage networks [1]–[4]. Relatively, com-
posite materials offered multiple positive attributes such as
lightweight, excellent contamination flashover performance,
easy transportation and superb resistance against vandalism
compared to old ceramic and glass materials-based insulation
technology [5], [6]. However, in the presence of contamina-
tion, silicone material may track and erode due to serious dry
band arcing (DBA) on the material’s surface. Such electrical
carbonized tracking and erosion results in serious conse-
quences and could challenge integrity of electrical network
assets. Furthermore, silicone materials are combustible once
ignited and keep burning despite having good inherent flame
resistance [7]. Therefore, it is highly critical to improve elec-
trical tracking/erosion and fire retardancy of silicone materials
concurrently to be used in wildfire-prone areas, globally.

Regarding silicone materials’ electrical tracking/erosion re-
sistance, numerous researchers investigated and explained the
mechanism of this issue through introduction of ceramic
inorganic particles [8]–[11]. El-Hag et al. [12] compared
erosion resistance of silicone rubber by incorporating silica
with different particle sizes. It is reported the introduction of
nanoparticles with 10wt% induced resistance against degrada-
tion equivalent to 50wt% micron particles. Recently, Sindhu
et al. [13] explored dry band arcing impact on silicone
elastomers using micro and nano ATH and it is reported
only 2wt% nano ATH interestingly rendered better resistance
to tracking/erosion relative to 30wt% of micron size ATH.
Moreover, Zolriasatein et al. [14] investigated the role of
nano-silica particles on electrical tracking performance of RTV
coatings. Results exhibited RTV composites with 1 to 3wt%
of nano silica didn’t ignite, which demonstrated its excellent
resistance against tracking. Sun et al. [15] explored ceramifi-
able technology using ATH and low-melting glass additives.
Outcomes suggested that ceramifiable layer offered excellent
resistance to carbonized tracking and erosion of silicone
material along with excellent mechanical and hydrophobic
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characteristics. Fairus et al. [16] compared tracking/erosion
performance of silicone/ethylene propylene diene monomer
blend using nano-sized aluminum oxide and titanium dioxide
particles. Results revealed that 1 vol% of aluminum oxide
imparted excellent tracking performance to blends relative to 2
vol% of titanium dioxide-filled composites. Moreover, tracking
failure time and thermal conduction ability of both blend com-
posites measured relatively higher than pristine polymer blend.
Meyer et al. [17] developed a relationship between leakage
current third harmonic component and surface temperature
in the electrical tracking and erosion test. Another study by
Meyer et al. [18] explained thermal conductivity of the silicone
composites significantly contributed to better tracking/erosion
performance. Du et al. [19] reported excellent tracking/erosion
performance of silicone composites using boron nitride (BN)
particles and it is discussed thermal dissipation due to excellent
thermal conductivity of silicone/BN composites resulted in
impressive improvement.

As far as combustibility of silicone materials is concerned,
Yoon et al. [20] explored fire resistance performance of
silicone composite materials using ATH and MDH particles.
Results suggested surface temperature substantially declined
in ATH, MDH carrying composites. Zhou et al. [21] reported
solely 39%-ATH-filled silicone rubber could offer impressive
importance in flame retardancy but, it improved with addition
of 1% red phosphorous in the composites because of compact
homogeneous char formation. Using ceramifiable characteris-
tics, Zhixi et al. [22] investigated fire retardancy of silicone
rubber using ATH, MDH, zinc borate and glass frits. The study
showed the limiting oxygen index (LOI) improved to 34.8%
in zinc-borate-filled composites. Hanu et al. [23] introduced
the mica, glass frit and iron oxide particles’ impact on thermal
stability and combustion efficiency of silicone rubber. Experi-
mental findings exhibited mica-15% and glass frit-5% offered
excellent thermal stability to silicone rubber while replacing
glass frit with iron oxide resulted in a substantial reduction in
heat release rate and superior heat barrier.

Intumescent additives are also widely engaged in improving
heat barrier and flame retardancy of silicone rubber [24], [25].
Liu et al. [26] incorporated 5% expandable graphite (EG) in a
silicone rubber matrix and achieved a V-0 level of UL-94 and
LOI of 33%. Jiaji et al. [27] investigated thermal conductivity
and flame retardancy of natural rubber using boron nitride
doped EG microspheres with PMMA shells. It is reported
with introduction of additives, the HRR and SPR significantly
declined whereas, thermal conductivity achieved 205% higher
than pristine natural rubber. Wang et al. [28] reported the effect
of different ratios of ATH and EG on flame retardancy and
electrical and mechanical properties. Results suggested ATH
and EG with a ratio of 1:1 had the highest LOI achieved while
resistance against flame increased with increasing contents of
EG.

In our previous work [29], dielectric, mechanical, fire and
hydrophobic properties of silicone rubber are discussed using
ATH, GN and GF additives. Electrical tracking/erosion investi-
gations are critical for a newly formulated silicone rubber to be
used in high-voltage outdoor insulation applications. Hence, in
this work, we prepared silicone rubber composites with ATH,

GN and GF and correlate physical tracking, erosion, leakage
current and infrared thermal profiles in IPT with the HRR and
SPR.

II. EXPERIMENTAL

A. Raw Materials

DC Products, Australia supplied pristine room tempera-
ture vulcanized (RTV) silicone rubber (Momentive, RTV615)
in two parts. RTV615 elastomer is a polydimethylsiloxane
(PDMS) based with a density of 1.01 g/cm3. PDMS molecule
[Si(CH3)2–O–]x has a repeating unit of [SiR2–O–]x and
belongs to the class of symmetrical dialkyl polysiloxanes.
Australian company Redox provided ATH with a 5.0 µm
average particle size. Australia’s Allnex Composites provided
milled glass fibers (GF) that were made using E-glass and
ranged in length from 50 to 210 µm. First Graphene, Australia
supplied PureGRAPH®5 graphene nanoplatelets (GN) with a
5.0 µm average size. Fig. 1(a) is illustrating morphology of
ATH, GN and GF on the micron level.

(a)

(b)

Fig. 1. SEM images of (a) surface morphology of additives (ATH, GN and
GF) and (b) microstructure of selected composites.

B. RTV Composites’ Synthesis

Initially, all particles were dried overnight in the laboratory
oven. Step 1: pertinent amount of RTV part A was taken in
a polyethylene cup and ATH was mixed in part A for 90 s
using a mechanical sharp blade mixer. Step 2: GN mixed in
the cross-composite matrix followed by GF for 90 s each.
Step 3: The required amount of RTV part B (A:B = 10:1)
was mixed and stirred in the composites for a shorter period
of 30 s to avoid curing of the matrix in the polyethylene cup.
Step 4: The matrix cups were passed through the degassing
phase. The matrix was degassed until no air bubble was seen
at the top of the surface. Step 5: The matrix was poured
into preheated molds. The molds were kept in a laboratory
oven for 1800 s at a temperature of 150 ◦C. A schematic
diagram for the fabrication of the RTV composite is given
in Fig. 2. The prepared composites were thoroughly washed
with ethanol and dried before performing all measurements.
Table I illustrates each RTV composite with RTV part A/B and
additives contents. Fig. 1(b) exhibits the SEM microstructure
of the selected RTV composites. It can be seen ATH is
distributed homogenously in the RTV2 and RTV4 whereas,
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Fig. 2. Schematic for the RTV composites’ preparation.

TABLE I
COMPOSITION OF RTV COMPOSITES STUDIED IN THIS PAPER

Name RTV part A
(%)

RTV part B
(%)

ATH
(%)

GN
(%)

GF
(%)

RTV1 90.90 9.10 – – –
RTV2 63.60 6.40 30.0 – –
RTV3 62.70 6.30 30.0 1.0 –
RTV4 58.20 5.80 30.0 1.0 5.0
RTV5 57.30 5.70 30.0 2.0 5.0

GF is captured in the 3-D distribution pattern in RTV4. GN
is added by only marginal 1% content in the RTV4 and
homogenously distributed in the composites. It is seen GF
constructs a 3-D network by holding the ATH and GN between
GF filaments.

C. Characterization and Measurements

SEM (Hitachi S3400, Mito, Japan) was used for the mi-
crostructure analysis of additives and RTV composites. Ac-
celerated high voltage (HV) of the instrument was controlled
at 20 kV. Moreover, RTV composites were coated with a thin
gold layer on the target side to make them conductive.

The inclined plane test (IPT) was carried out in accordance
with the IEC 60587 criterion and its schematic is shown
in Fig. 3. RTV composites with a dimension of 5 cm ×
12 cm × 0.6 cm were cast for IPT and mounted on a
PTFE insulating support using top HV and bottom ground
electrodes. A 25 kΩ resistor was also inserted in the circuit to
avoid overcurrent. Moreover, the contamination solution was
prepared using NH4Cl (0.1 wt%) and a wetting component of
Triton X-100 (0.02wt%) in distilled water. HV was supplied
through a single phase 250 V/11 kV transformer with a variac
to control energizing voltage in the circuit at power frequency
of 50 Hz. A 3 kV initial voltage and contamination flow rate of
0.3 ml/min were used in the stepwise tracking voltage method
(method 2: IEC 60587). Tracking voltage was increased by
250 V per hour and IPT lasted a total of 4 hours.

Leakage current (LC) was recorded by measuring voltage
drop across 100 Ω as a sampling resistor as seen in Fig. 3. For
this purpose, a 32-bit NI DAQ-6251 data acquisition coupled
with the computer was used with a sampling rate of 1000
samples per second. The voltage drop and leakage current of
composites in the IPT were measured using a Matlab program.

DAQ
System

FLIR Camera

Peristaltic pump

Top HV
electrode

Bottom
electrode

Sample

PTFE
support

Variac

Test Transformer
250V/11kV/16kVA

240 V
AC

Sampling
resistor

Current limiting
resistor

NH4Cl
solution

Fig. 3. Schematic diagram for IPT experimental setup.

A cone calorimeter (FFT iCone Classic, UK) was used to
determine flame retardancy of RTV composites according to
ASTM E 1354. RTV samples with size of 10 cm × 10 cm ×
0.3 cm were tested at heat flux of 35 kW/m2. Heat release
rate and smoke production rate were analyzed from cone
calorimeter data.

III. RESULTS

A. Physical Tracking and Erosion

Electrically conductive carbonous tracking and erosion pat-
tern at the end of IPT is depicted in Fig. 4. Physical length
of the carbonous pattern was analyzed using precise vernier
before removal of all residual material from composites.
Moreover, samples were cleaned with ethanol and distilled
water and dried in the lab oven for half an hour at 100 ◦C.
The samples were then weighed using an electronic balance to
determine mass difference while digital height gauge instru-
ment was used to compute erosion depth of the composites.
Fig. 5 illustrates composites’ tracking length, erosion depth,
and eroded mass after IPT. It is noted that substantial reduction
in tracking length, eroded mass and erosion depth is seen in the
RTV4 relative to its counterparts. Tracking length is measured
at 14.8 mm in RTV4 which is less than 58.7% and 27.8%
relative to RTV1 and RTV2. Interestingly, erosion depth and
eroded mass are also found consistent with tracking length
findings. Erosion depth is measured at 1.5 mm which is lower
by 67.4% and 42.3% while, eroded mass is computed at 0.13 g
which is less by 91.3% and 27.7% relative to RTV1 and RTV2,
respectively.

B. Leakage Current

Figure 6 is illustrating the fundamental and third harmonic
component of leakage current recorded in the final two hours
of IPT using the fast Fourier transform. To explore key features
of data presented in Fig. 6, a method of moving average
of adjacent ranges in OriginPro was used with a backward
and forward offset of 50. Fig. 7 depicts the fundamental
component and third harmonic component of leakage currents
after moving average smoothing for the last two hours of IPT.

Peak values of the fundamental leakage current component
are computed at 9.8, 10.2, 14.9, 8.7, and 17.4 mA in RTV1,
RTV2, RTV3, RTV4, and RTV5, as shown in Fig. 7(a).
Surprisingly, both the fundamental and third harmonic compo-
nents of leakage current are significantly lower in RTV2 and



NAZIR et al.: ELECTRICAL TRACKING, EROSION AND FIRE RETARDANCY PERFORMANCE OF SILICONE RUBBER INSULATION CONTAINING ALUMINUM TRIHYDRATE, GRAPHENE AND GLASS FIBER ADDITIVES 1921

Fig. 4. Physical erosion and tracking pattern on the surface of RTV composites.
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Fig. 5. Physical tracking length, erosion depth and eroded mass of RTV
composites.

0

2

4

6

8

10

12

14

16

18

20

T
h
ir

d
 h

ar
m

o
n
ic

 l
ea

k
ag

e 
cu

rr
en

t 
(m

A
)  RTV 1

 RTV 2
 RTV 4

(b)

120 140 160 180 200 220 240
0

10

20

30

40

50

F
u
n
d
am

en
ta

l 
le

ak
ag

e 
cu

rr
en

t 
(m

A
)

Time (min)

 RTV 1
 RTV 2
 RTV 4

(a)

Fig. 6. The leakage current of composites (a) Fundamental component and
(b) third harmonic component of leakage current as a function of time.
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Fig. 7. The leakage current of composites (a) Fundamental component and
(b) third harmonic component of leakage current as a function of time after
smoothening of data using moving average method.

RTV4 compared to their counterparts. Tracking and erosion of
materials in IPT are well-known to be correlated with the third
harmonic component of leakage current due to joule heating
effect [30]. As seen from Fig. 7(b), magnitude of the third
harmonic component exits in leakage current significantly
reduced in RTV2 with introduction of ATH particles in the
pristine specimen. Moreover, it is found addition of 1% of GN
and 5% of GF in RTV4 substantially reduced development of
the third harmonic leakage current component. Interestingly,
no peak in RTV 4 is seen crossing 3.5 mA while the majority
of peaks are seen crossing 4.0 mA in RTV3 and RTV5 which
represent the highest development of leakage current and dry
band arcing, relatively. The peak third harmonic component of
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Fig. 8. Infrared thermal images of RTV composites.

leakage currents is measured at 5.3, 5.0, 7.1, 3.4 and 7.3 mA
in RTV1, RTV2, RTV3, RTV4 and RTV5, respectively.

C. Temperature Profiles

DBA substantially increases surface temperature of the
specimen which leads to track and erosion failure of electrical
insulating materials. As a result, an infrared thermal camera
was used to record thermal profile data during the final two
hours of IPT. Fig. 8 shows infrared thermal images captured
at peak temperature point during the IPT. Recorded data
were processed by fixing a rectangular box on the sample
from top to bottom electrode and average temperature was
computed as explained in [31]. Furthermore, processed data
was smoothed with the backward and forward offset of 50 as
earlier described and is shown in Fig. 9. The maximum average
temperatures on the surfaces are exhibited at 195, 147, 225,
74 and 185 ◦C in RTV1, RTV2, RTV3, RTV4 and RTV5,
respectively. Comparatively, lower temperatures are seen in
RTV2 and RTV4 with minor temperature spikes. Interestingly,
the maximum average temperatures are found to be consistent
with the third harmonic leakage current profiles relative to the
time incurred for IPT.
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Fig. 9. Temperature profiles of RTV composites as a function of time.

D. Flame Resistance

The heat release rate and smoke production rate are an-
alyzed for the flame resistance of the RTV specimen in
this work. Fig. 10 shows the enhancement in fire resistance
performance of composites with the addition of additives

which reduces the heat release rate and smoke production
rate. The peak heat release is measured at 217, 146, 118,
116 and 119 kW/m2 (Fig. 10(a)) in RTV1, RTV2, RTV3,
RTV4, and RTV5 whereas, the smoke production rate exhibits
0.086, 0.045, 0.024, 0.018, and 0.020 m2/s (Fig. 10(b)) in
RTV1, RTV2, RTV3, RTV4, and RTV5, respectively. It is
found ATH renders a substantial impact in reducing heat
release and smoke production of pristine silicone rubber while
GN/GF synergically impact positively to further lowering both
parameters in solely ATH-filled RTV2.
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Fig. 10. (a) Heat release rate and (b) smoke production rate of specimens.

IV. DISCUSSION

Results suggest the presence of ATH (30%), GN (1%) and
GF (5%) exhibit significant impact in improving physical
tracking and erosion performance of silicone rubber by re-
ducing leakage current development and surface temperature
during the IPT. Electrical tracking tends to start due to thermal
accumulation and increase in localized surface temperature
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which thermally depolymerizes the methyl groups in the
silicone rubber structure [32]–[34]. This high-temperature de-
terioration results in a carbonous track formation and erosion
in the target sample. Therefore, the limiting oxygen index
(LOI) of composites is measured at 26, 30, 35, 36 and 38%
in RTV1, RTV2, RTV3, RTV4, and RTV5, respectively [35].
It is a well-known fact thermal conductivity is directly re-
lated to tracking and erosion formation of the surface and
controlled thermal stress gradient [18]. Therefore, thermal
conductivity of the composites is measured using LFA447
(Netzsch). Thermal conductivity is measured at 0.329, and
0.376 W/(m·K) in RTV2 and RTV4, respectively whereas, it
was measured at 0.190 W/(m·K) in RTV1. It is highly likely
that RTV4 with high thermal conductivity has more capability
to conduct heat out from the DBA region and maintain
lower surface temperature. Hence, this mechanism expects
to reduce drying and evaporation of contaminated water on
the surface of composites [16]. This activity will assist in
declining DBA and leakage current formation which may
result in excellent tracking performance in RTV2 and RTV4.
Interestingly, RTV3 and RTV5 offer thermal conductivity of
0.368 and 0.408 W/(m·K) but exhibit poor tracking/erosion
and high leakage current development. It could be due to an
increase in electrical bulk conductivity due to presence of GN
in the composites. Electrical bulk conductivity of composites is
measured at 1.954 × 10−13, 1.642 × 10−13, 1.985 × 10−13,
1.953 × 10−13 and 2.476 × 10−13 S/cm in RTV1, RTV2,
RTV3, RTV4 and RTV5. The excellent tracking performance
of RTV4 could be due to presence of GF/GN together and
it may improve rigidity and restrict segmental moment in the
composites [36]. It could improve the barrier against DBA and
enhance resistance against electrical discharges.

It can also be attributed to inherent flame retardancy prop-
erties of ATH and GN that RTV2 and RTV4 are excellent in
tracking, erosion, and flame resistance. As ATH decomposes at
250 ◦C to 350 ◦C, it always releases its inherent water. During
combustion, the amount of water released decreases [37].
Therefore, RTV2 appears with much lower physical track-
ing/erosion, heat release and smoke production parameters.
Furthermore, the excellent flame resistance performance of
RTV3, RTV4 and RTV5 could be due to carbonous char
layer structure formation in presence of GN. It is believed
that GN could assist in char layer formation which acts as a
heat barrier [38]. Furthermore, GF could transform this barrier
into a rigid and compact char structure with improved fire
resistance.

V. CONCLUSION

Electrical tracking/erosion and flame resistance of silicone
rubber was investigated using ATH, GN and GF. Physical
tracking, erosion depth, eroded mass, leakage current, infrared
thermal profiles, heat release rate and smoke production rate
were analyzed in this work. From experimental findings, it is
concluded physical tracking length, erosion depth and eroded
mass of silicone rubber declined with introduction of 30%
ATH as seen in RTV2. Moreover, performance of RTV5 in IPT
suggested addition of 1% of GN and 5% of GF could assist

in further improving tracking/erosion performance of solely
ATH-filled silicone rubber. Fundamental and third harmonic
components of leakage current appeared considerably lower
in RTV2 and RTV4 while maximum average temperatures are
found to be consistent with third harmonic leakage current
findings. It is also summarized ATH substantially contributed
to reducing the heat release rate and smoke production of
composites whereas, GN/GF facilitated in reducing the above-
mentioned parameters to a great extent in the case of solely
ATH-filled RTV composites. It is concluded improvement
in thermal conductivity and inherent flame retardancy of
ATH/GN along with GF could assist in developing a barrier
against DBA and combustibility.
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