ALTERATIONS IN THE CENTRAL DOGMA UNITS UNDER TRIVALENT ARSENIC STRESS DURING PREPARATORY PHASE OF OVARIAN CYCLE OF MYSTUS (M.) VITTATUS (BL.)

Main Article Content

Anuradha Shukla, Yogendra Kumar Payasi and J.P. Shukla

Abstract

Central dogma units comprise of DNA, RNA and synthesis of protein. Reproductive cycle in fishes is always dynamic and the units of central dogma are always changing in different phases of testicular and ovarian cycle which constitute reproductive cycle in fishes. The adult specimens of Mystus (M.) vittatus, a tropical siluroid, when exposed for 30 days to sublethal concentration of trivalent arsenic (11.24 mg/I) revealed significant decline in DNA, RNA and consequently protein in the ovary of Mystus (M.) vittatus during its preparatory phase. However, 15 days exposure revealed less significant alterations. Causes for declining in various units of central dogma and consequently protein synthesis is discussed in this paper.

Downloads

Download data is not yet available.

Article Details

How to Cite
and J.P. Shukla, A. S. Y. K. P. (2022). ALTERATIONS IN THE CENTRAL DOGMA UNITS UNDER TRIVALENT ARSENIC STRESS DURING PREPARATORY PHASE OF OVARIAN CYCLE OF MYSTUS (M.) VITTATUS (BL.). Journal of Advanced Zoology, 42(02), 194–198. https://doi.org/10.17762/jaz.v42i02.54
Section
Articles

References

APHA, 2005. Standard Methods for examinations of water and waste water, 21st Edition, Washington DC.

Allen, T. and S.V. Rana, 2004. Effect of arsenic on glutathione dependent enzymes in liver and kidney of fresh water fish Channa punctatus. Biol. Trace. El. Res., 100:39-48. DOI: https://doi.org/10.1385/BTER:100:1:039

Bears, H.R., J.G Chards and P.M. Chitti, 2006. Arsenic exposure alters hepatic and stress mediated gene expression in the common killfish, Fundulus hetroclitius. Aquat Toxicol., 77:257-266. DOI: https://doi.org/10.1016/j.aquatox.2005.12.008

Cohen, T., S. Hee and R. Ambrase, 2001. Trace metals in fish and invertebrate of three California coastal wetlands. Mal. Pollu. Bull., 42: 224-232. DOI: https://doi.org/10.1016/S0025-326X(00)00146-6

Dikshith, T.S.S., 1973. In vivo effects of parathion on guinea pig chromosomes. Environ. Physiol. Biochem., 3:161-168.

Farag, A.M., T. May, G.D. Marty, M. Easton, D.D. Harpner, E.E. Little and L. Cleveland, 2006. The effect of chronic chromium exposure on the health of chiwok salmon (Oncorhynclus ishawyscha). Aquat. ToxicoL, 76(3):246-257. DOI: https://doi.org/10.1016/j.aquatox.2005.09.011

Fischer, R.A., 1983. Statistical methods for research workess. 13 Eds. Oliver and Boyd, London, pp. 122-125.

Fowler, B.A., 1977. Toxiology of environmental arsenic. In: Toxiology of trace elements. Washington, Hemisphere Pus. Corpn., 2: 78¬122.

Freed, J.J. and S.A. Sehetzis, 1969. Chromosomes aberration in cultured cells deprived of single essential amino acids. Exp. Cell. Res., 55:393-397. DOI: https://doi.org/10.1016/0014-4827(69)90574-6

Gerofer, M., M. Powert, M. Schramm, Muller and R. Rriebskorn, 2001. Ultra-structureal bio-markers as tools to characterize the health states of fish in contaminated streams. J.Aqua. Ecosyst. Stress Res., 8:241-260. DOI: https://doi.org/10.1023/A:1012958804442

Ghosh, D., S. Bhettacharya Mazumdar, 2006. Purturbations in cat fish immune response by arsenic, organ and cell specific effects. Comp. Phermacol. Toxicol S., 143:455-463. DOI: https://doi.org/10.1016/j.cbpc.2006.04.010

Ghosh, D., S. Bhettacharya and S. Mazumdar, 2007. Long term exposure to arsenic effects to head kidney and impair humoral immune response of Clarias Satrachus. Aquat. Toxicol., 81: 79-89. DOI: https://doi.org/10.1016/j.aquatox.2006.11.004

Harper, A.H., 1983. Review of biochemistry. 20th Eds. Large Medical Publication Co. California, pp. 1012.

Karadore, A.H. and E. Unlu, 2007. Heavy metal concentration in water, sediment, fish and some benthic organism from Tigris river, Turkey Env. Monit. Assess., 131:323-327. DOI: https://doi.org/10.1007/s10661-006-9478-0

Kovandon, K.S., S. Janansthan and M. Saranaman, 2013. Expression of malathion in liver and Kidney of freshwater Vmeer fish, cyprinus carpio var communis (Linn) exposed to arsenic. trioxide Ame J. Sci. Indus. Res., 4(1):1-10. DOI: https://doi.org/10.5251/ajsir.2013.4.1.1.10

Lolyd, D.R., D.H. Phillips and P.L. Carmichad, 1997. Generation of purative intra-strand cross-link and strand break in DNA by transition metal ion mediated oxygen radical attack. Chem. Res. Toxicol., 10:393-400. DOI: https://doi.org/10.1021/tx960158q

Lowery, 0.H., N.J. Rosebrough, A.L. Furr and R.J. Randall, 1951. Cited in colowick SP and kaplon NO. Eds. Methods in enzymology. 3: 448-450.

Peters, J., V. Salmoid and W.U. Kand, 1970. Chromosome aberration chilchen lymphosystem. Med.. Wo. Ch., 95:79-80. DOI: https://doi.org/10.1055/s-0028-1108414

Palmer, K.A., S. Green and M.S. Legator, 1972. Cytogenetic effects of DDT and derivative of DDT in cultural Mammalian cell line. Toxicol. AppL Phermacol., 22:355-362. DOI: https://doi.org/10.1016/0041-008X(72)90241-4

Shukla, J.P. and K. Pandey, 1988. Toxicity and long-term effects of a sublethal concentration of cadmium on the growth of the fingerlings of ophiocephalus punctatus (B1.). Acta Hydrogen. Hydrobiol., 16(5): 537-540. DOI: https://doi.org/10.1002/aheh.19880160515

Shukla, Anuradha and J.P. Shukla, 2016. Toxic impact of arsenic on the blood pyruvate level in the fingerlings of a freshwater siluroid, Mystus (M.) vittatus (BI). The GI. J. Env. Sci. & Res., 3:59-62.

Shukla, Anuradha and J.P. Shukla, 2017. Succinate dehydrogenase activity as an index of trivalent arsenic toxicity in fingerlings of tropical fresh water siluroid Mystus (M) vittatus (BI). Int. J. Curr. Trends in Sci. & Tech., 8(1):20482-20486.

Storelli, M.M., G Isabarove, A. Storelli and GO. Macrotrigiano, 2006. Trace metals in tissue of Mugilids (Mugil aratus, Mugil capito and Mugil labrus) from the Mediterranean sea. Bull. Env. Conam. Toxicol., 77: 43-50. DOI: https://doi.org/10.1007/s00128-006-1030-y

Schneider, W.C., 1945. Phosphorus compounds in animal tissues. Extraction and estimation of deoxypentose nuclec acid and pentose nuclec acid. J. Biol. Chem., 161:293-303. DOI: https://doi.org/10.1016/S0021-9258(17)41543-2

Vankataramraddy, V., S.S. Vutukutu and P.B. Tchounnam, 2009. Ecotoxicology of hexavalent chromium in freshwater fish. Rev. Environ. Health, 24(2): 129-145. DOI: https://doi.org/10.1515/REVEH.2009.24.2.129

Vutukur, S.S., 2003. Chromium induced alterations in some biochemical profiles of the Indian major carp, Labao rohita (Ham). Bull. Environ. Contam Toxicol., 70(1): 118¬123. DOI: https://doi.org/10.1007/s00128-002-0164-9

Vutukur, S.S., 2005. Acute effects of hexavalent chromium on survival, oxygen corsumption, hematological parameters and some biochemical profiles of Indian major carp, Labeo rohita. Int. J. Environ. Res. Public Health., 2(3): 456-462. DOI: https://doi.org/10.3390/ijerph2005030010

Yilmaz, A.B., T. Cemal and T. Tashin, 2010. Uptake and distribution of hexavalent chromium in tissue gill, skin and muscle of a freshwater fish, Tilapia, (Oreochromis aureus). Env. Chem & Ecotoxicol., 2(3): 28- 33.