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Abstract 

The aim of our experiments was to demonstrate the increase in the corrosion resistance of two 

stainless steels after nanolayer deposition. The questions we wanted to answer were: how the 

self-assembled deposition time influences the compactness of the nanolayers and how the steel 

composition influences the nanofilms deposition, its compactness and the anticorrosion 

efficiency. To answer these questions self-assembled molecular layers were prepared by dipping 

technique; the nanolayers were characterized by water wettability values and the two different 

stainless steel samples with and without nanofilms were subjected to corrosive media (sodium 

chloride solution). The effect of the chloride ions on the solid surfaces were visualized by atomic 

force microscopy and characterized by roughness parameters. The anticorrosion efficiency 

caused by the steel surface compositions as well as by the different self-assembled adsorption 

time was explained by the experimental data. 
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1. Introduction 

Corrosion is a well-known, natural, undesired, degradation process when metals – of higher 

energy – react with the environment in the presence of moisture, aggressive chemicals and 

corrosion relevant microorganisms; it induces the structural decay which is the consequence 

of reaction when metals turn into lower energy form, i.e. in oxides, salts; then the durability 

and strength of the metal decreases, its lifespan shortens. The speed of corrosion reactions 

could be reduced (but never stopped!) in different ways. When metals are immersed into 

(aqueous or oily) liquids, the rate of metal dissolution can be controlled by addition of 

inhibitors that in small quantity can decrease the corrosion at very low concentration. These 

molecules could be of inorganic, organic or biological origin; most of them contain hetero 
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atoms (nitrogen, oxygen, sulfur, phosphor) that with their special characters (e.g. lone 

electron pair, free acidic groups, unsaturated bonds, etc.) improve the anticorrosion 

effectiveness. Inhibitors with phosphono groups can adhere to a metal oxide layer forming 

a –P–O–Me bond (Me= metal ion) [1–10].  

Other possibility is the application of anticorrosion surface coatings in thin (mono- and 

multi-molecular) or in thicker layers that can increase the lifespan of metals [11, 12].  

There are different methods to produce molecular films: Langmuir–Blodgett (LB) 

technique (which needs special equipment and the size of the metal to be covered is limited) 

[13–17], self-assembling [18–22], or layer-by-layer molecular deposition [23, 24]. 

The formation of self-assembling molecular layers (SAMs) is an adsorption process 

when the components spontaneously form layer of ordered static structure with a 

thermodynamic equilibrium. The SAM former molecules that are organic molecules with 

functional groups, which interact with surfaces, can produce thin films. During layer 

formation the so-called amphiphilic molecules can spontaneously adsorb onto the metal 

surface via their head groups by physical or chemical adsorption and by intermolecular 

interactions among the hydrophobic molecular parts that helps the formation of well-

ordered, compact layer. The SAM- coated solid surfaces can effectively attenuate the surface 

energy of metals and regulate the wettability, protect metals against corrosion and 

biodeposition. With other words the SAMs protect metals against corrosion effectively 

inhibiting and slowing down the corrosion processes. The effectiveness of a SAM film 

against corrosion depends on several factors (structure of the amphiphilic molecule, 

composition of metal and the passive surface layer, corrosive environment, compactness of 

the SAM films). The most important is that this type of nanolayers can save the metals 

against corrosion and, at the same time, increase the lifespan of structural metals. 

The SAM layers offer several advantageous application possibilities in the corrosion 

field as they can form barrier between the metal and the aggressive environment or form a 

stable oxide layer on the solid surface. It is important to achieve a SAM with highly compact 

structure, with other words to achieve a balance between packing density, structural integrity 

and uniformity. The factors that affect the compactness of self-assembled nanolayers are the 

follows: defects and ordering, surface coverage, molecular packing and mobility, stability to 

mention only some of them. In special cases the damaged SAM layer can rearrange itself 

and restore the barrier property. 

Applications of SAM layers on different areas are the follows: oil and gas-, aerospace-, 

marine and chemical industry. The SAMs could be tailored for specific environment and 

applications. 

The quality of SAMs can be characterized by some techniques such as measuring the 

change in wettability by contact angle values [15, 25, 26], visualizing the surface 

morphology by atomic force microscopy (AFM) [27, 28], analyzing the chemical 

composition, structure and thickness of the thin films by surface sensitive techniques as X-

ray diffraction, FTIR, ellipsometry, sum frequentinal vibrational spectroscopy [29–34]. 



 Int. J. Corros. Scale Inhib., 2023, 12, no. 3, 1261–1274 1263 

    

 

This paper deals with the application of self-assembled molecular layer formed by 

undecenyl phosphonic acid on two steels with different composition. The question was how 

the composition of the steel as well as the preparation condition changes the anticorrosion 

activity of the SAM layers and how can we characterize the nanofilms by water contact angle 

values and by AFM and evaluate the anticorrosion effectiveness by surface visualization and 

via surface roughening parameters. 

2. Experimental Work  

2.1. Materials  

Metals: Two types of steels were used in SAM deposition experiments:  

• ARMCO pure iron (AK Steel International B.V): C 0.01%, Mn < 0.06%, P 0.005%, 

S 0.003%, balance Fe. 

• Mild steel (Yili Steel Materials Co): C <0.1%, Mn 0.3%, P 0.05%, S 0.05%, balance Fe. 

This type of steel is mainly used in the construction and automotive industries. Its 

weldability, ductility and machinability are good. 

• 1.4841 steel (APERAM, Genk, Belgium): elements: Cr 25%, C 0.2%, Si 2%, Mn 2%, 

P 0.045%, S 0.045%, balance Fe. This type of steel is used in construction for high 

temperature, in mechanical engineering, in oil industry.  

• 1.4571 steel (APERAM, Genk, Belgium): elements [%]: Cr 17, C 0.08, Si 1, Mn 2, 

P 0.045, S 0.045, Mo 2, Ni 12, Ti 0.7, balance Fe. This type of steel is used in 

construction, chemical, medical and pharmaceutical industry. 

The metal samples in size 10×10×1 mm were first handled with emery paper with 

different grain sizes (200, 400, 800 and 1200 mesh), then polished by diamond pastes (15, 

12, 9, 6, 3 m grain size). After all polishing steps the coupons were sonicated in water and 

at last in methanol to remove the leftover polishing particles from the surface. 

Amphiphile: In all experiments the undecenyl phosphonic acid amphiphile  

(CH=CH–[CH2]9–PO(OH)2, MW: 234), (Specific Polymers, Castries, France) was 

dissolved in methanol at 5·10–3 M concentration.  

2.2. SAM layer preparation  

The polished and cleaned coupons were immersed into the solution of the amphiphile for 

different time length, at room temperature. The excess of the solution was removed by 

dipping the solids into pure solvent (i.e. methanol) for a short time; then the meatal samples 

were dried at air. 

2.3. Characterization of SAM layers by water wettability values 

The wettability of metal coupons with and without SAM coatings was determined by water 

contact angle, which was measured by sessile drop of MilliQ water placed by motorized 

syringe on the top of coupons [25].  
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2.4. Corrosion experiments 

The influence of NaCl solution (3% in water; pH 6.8) on metal coupons (with or without 

SAM coatings) was studied after 4 hours (in case of ARMCO pure iron and mild steel) and 

after 5 days (on 1.4841 and 1.4571 steels). After dipping the metal samples into the chloride 

solution at room temperature, the coupons were pulled out and rinsed by MilliQ water and 

then dried at air. 

2.5. Visualization of the metal surfaces before and after corrosion tests 

The metal samples (with and without nanolayers) and before and after corrosion tests were 

visualized by AFM (NanoScope III, Digital Instrument; tip: Si3N4) in contact height mode, 

on air. The morphology of the solid surface before and after nanolayer deposition as well as 

after corrosion tests was visualized and presented in 2D and section images. Numerical 

evaluation of the AFM images allowed the calculation of roughness of the surfaces 

(measured at least on three different spots).  

3. Results and Discussion 

The effectiveness of nanocoatings i.e. the influence of the SAM layer developed from 

undecenyl phosphonic acid on two different steels in shorter (4 hours) and longer (24 hours) 

adsorption time was analyzed in order to show whether the alloying components as well as 

the nanofilm formation time can influence the layer characteristics and the anticorrosion 

effectiveness of the films or not. With other words the passive layers formed under normal 

condition on the steel surface before the SAM preparation can determine the compactness 

of the nanofilm or not. In order to show the importance of alloying elements in anticorrosion 

behavior, pure iron and mild steel were also involved into the experiments. 

3.1. Evaluation of wettability measurements 

The wettability of different metal surfaces measured by water drop is generally assumed to 

be around 60°; it is important information especially in corrosion processes. We have to 

remark that it depends on surface oxide layer of unknown composition and thickness that 

forms during the polishing and cleaning process. The water cannot spread well on an oxide-

free metal surface [35, 36]. Table 1 summarizes the contact angle values measured on 

different metals with and without self-assembled molecular layers. 

The analysis of the contact angle values measured by water drops clearly show that 

metals without coatings have smaller contact angles (with other words they are better wetted) 

than those, that are covered by self-assembled layer. It is also visible that the nanolayer 

formed in shorter time cannot fully cover the steel surface; there should be some uncovered 

islands on the basic metal/metal oxide surface. It is also remarkable that the composition of 

the steel influences the wettability. In case of the 1.4841 steel the Cr content is higher (25%) 

then in the 1.4571 steel (17% Cr). Additionally, in the 1.4571 steel there are Ni (12%) and 

Mo (2%) alloying components. The surface composition influences the wettability, 
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especially the chromium oxides/hydroxides formed on the surface. It is also known that the 

phosphonic acid groups can better bind to chromium oxide surface than to nickel oxide. 

Table 1. Static wettability data measured on ARMCO pure iron, mild steel, 1.4841 and 1.4571 steel surfaces 

with and without undecenyl phosphonic acid SAM layers (layer preparation: in 5·10– 3 M undecenyl 

phosphonic acid solution at room temperature). 

Solid surface Water contact angle [°] 

ARMCO pure iron 68.4 

Mild steel 65.3 

1.4841 steel 60.2 

1.4841 steel+4 h SAM 70.5 

1.4841 steel+24 h SAM 81.1 

1.4841 steel+48 h SAM 81.3 

1.4571 steel 65.6 

1.4571 steel+4 h SAM 66.9 

1.4571 steel 24 h SAM 72.4 

1.4571 steel 48 h SAM 79.5 

3.2. Surface visualization by atomic force microscopy 

The atomic force microscopy that was discovered by Binning, Quate and Gerber in 1985 

(they have won Nobel Prize for this invention), is a high resolution, non-optical powerful 

tool for surface visualization. It can resolve features at small size (m–nm) in real space. 

We applied this technique to show the surface of the original metal, as well as after 

nanolayer deposition and after the corrosion tests when sodium chloride solution was the 

aggressive medium. The next figures (Figure 1–3.) summarize the surfaces with and without 

SAM layers (produced in shorter and longer layer deposition time) and the influence of the 

chloride ions used in corrosion tests. Please, notice the differences among AFM images taken 

on pure iron, on mild steel and on the two different steels of different alloying metals in 

different percentage as well as the influence of the nanolayer formation time. 

Important observation is that already FOUR HOUR-LONG immersion in the corrosive 

solution caused serious roughening of the pure and almost unalloyed mild steel samples 

unlike in case of alloyed 1.4571 and 1.4841 steels where much less roughening was observed 

after FIVE DAY-LONG immersion as the visual observation proves. The smoothness of the 

SAM deposited metal is less visible after shorter time than after longer dipping in the 

amphiphile solution. It is interesting observation that a longer than 24 h immersion of the 

1.4841 steel in the amphiphile solution results in a less smooth surface after the corrosion 

test. This is the consequence of the formation of second layers and islands on the first 

monolayer that cannot cover the solid surface fully.  
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Figure 1. Surface of ARMCO pure iron and mild steel before and after corrosion experiment. 

AFM images were taken in contact mode, demonstrated in 2D and in section analysis. 

 In air After 5 days in NaCl solution 

1.4841 steel 

 

 

Figure 2a. Surfaces of 1.4841 steel in uncovered form. AFM images were taken in contact 

mode, demonstrated in 2D and in section analysis. 
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Figure 2b. Surfaces of 1.4841 steel after SAM deposition in different times and after 

corrosion experiment. AFM images were taken in contact mode, demonstrated in 2D and in 

section analysis. 

 In air After 5 days in NaCl solution 

1.4571 steel 

 

 

Figure 3a. Surfaces of 1.4571 steel in uncovered form. AFM images were taken in contact 

mode, demonstrated in 2D and in section analysis.  
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Figure 3b. Surfaces of 1.4571 steel after SAM deposition in different times and after 

corrosion experiment. AFM images were taken in contact mode, demonstrated in 2D and in 

section analysis.  

The roughness parameters provide numerical evidence on the observation of AFM 

images. 

3.3. Roughness parameters 

There are three different roughness parameters that can characterize a surface (Ra denotes 

the arithmetic average height parameters, Rq means the root mean square roughness, Rmax is 

sensitive to the height of peaks and to the deep scratches) [37]. 

Table 2. Summary of the roughness parameters measured on ARMCO pure iron, on mild steel and on 

1.4841 and 14571 steels. 

Metal Rq [nm] Ra [nm] Rmax [nm] 

ARMCO pure iron 3.21 2.24 46.2 

+4 hours NaCl 137.0 108.0 1009 

Mild steel 3.65 2.48 47.6 

+4 hours NaCl 178.0 136.0 1134 
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Metal Rq [nm] Ra [nm] Rmax [nm] 

1.4841 steel 5.22 4.17 55.60 

+5 days NaCl 7.11 5.14 102.0 

1.4841 steel+4 h SAM 3.55 2.39 48.12 

+5 days NaCl 6.58 4.76 83.7 

1.4841 steel+24 h SAM 5.75 4.23 53.01 

+5 days NaCl 6.2.0 5.19 68.10 

1.4841 steel+48 h SAM 6.89 4.95 63.19 

+5 days NaCl 9.51 6.76 181.00 

1.4571 steel 7.14 5.46 58.30 

+5 days NaCl 7.24 5.93 112.0 

1.4571 steel+4 h SAM 4.03 3.10 37.10 

+5 days NaCl 4.93 3.59 68.50 

1.4571 steel+24 h SAM 4.85 3.90. 52.30 

+5 days NaCl 5.39 3.63 73.10 

1.4571+48 h SAM 3.89 3.06 43.00 

+5 days NaCl 8.31 7.52 146.30 

After the corrosion tests the change in all three types of surface roughness parameters 

show almost twenty-time higher values in case of the ARMCO pure iron and mild steel than 

measured on air. On the other hand, the steels 1.4571 and 1.4841 suffer much less irregularity 

caused by aggressive chloride ions; the changes are less than twice at the Rq and Ra values 

and not higher than twice in case of the Rmax values, which is very sensitive to the heights 

and peaks. It is interesting that after the corrosion experiments, the ratios of Rmax values are 

similar at both stainless steels but the Rq and Ra changes are less at the 1.4571 steel. The 

presence of the SAM layer after 4 hour long deposition time can save the surface but only a 

24 hour long immersion can produce compact layer, which is reflected in less roughening: 

even after 5 day long corrosion experiments the ratio between the surface roughness of the 

starting nanofilm covered metal surface and that one’s after corrosion tests are maximum 

two, even in the case of the surface sensitive Rmax values. The influence of the SAM layer in 

4 and 24 hour-long deposition time results in almost similar effectiveness at both types of 

stainless steels, but the layer developed in 48 hours decreases the anticorrosion efficiency, 

which is reflected in higher roughness. 

On the basis of comparison of roughness values and the wettability parameters we 

cannot decide whether the wetting is a Wenzel or a Cassie–Baxter type. The Wenzel model 

allows the comparison of the wettability parameter with the roughness values. Whether the 

roughness increases the wettability or not it depends on the surface layer composition of the 
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metal oxide and the covertness by amphiphiles. The problem is that the shorter deposition 

time could not be enough to cover the oxide layer with the amphiphilic molecules fully; the 

uncovered surface allows the adsorption of air bubbles (Cassie–Baxter model). The decision 

between the two types of wetting models needs further experiments.  

3.4. Influence of the alloy composition on the wettability 

The passive films could play important role in corrosion resistance. The main elements in 

the stainless steel passive films are oxides of alloying elements, mainly Cr and Ni as well as 

of the balk metal. It is proved that the oxide layer is more compact and show higher 

protection ability in corrosion processes than hydroxides [38–40]. In our previous paper we 

demonstrate the distribution of alloying components on different steel surfaces [28].  

The composition of the surface oxide layer also influences the attachment of the 

phosphonic groups in the amphiphilic molecules; this significantly influences the surface 

wettability. Please, remember that the contact angle value of the steel 1.4841 (where the sum 

of the alloying component is about 27%) is 60.2° and in the case of steel 1.4571 (with circa 

31% alloying component) 65.6°. Of course, not only the sum of the metals in the alloy 

influences the wettability but the types and concentration of the metal oxide on the solid 

surface. The surface coverage with chromium oxides is much higher in case of the 1.4841 

than at the 1.4571 stainless steel. In the first case mainly chromium oxide (and, of course, 

iron oxides/hydroxides) cover the alloy surface, and at the 1.4571 steel surface is partly 

occupied by nickel oxides, too. The other alloying components are in similar concentrations 

in both steels except the Ti that in the 1.4571 steel is in 0.7%. The surface distribution of the 

alloying elements was demonstrated earlier [28].  

4. Conclusion 

These experiments demonstrated that the sensitivity of stainless steels against corrosion 

(which is mainly due to their alloying components and the surface passive layers), could be 

increased with special surface treatments, i.e. with amphiphilic nanolayer deposition that 

decreases the water wettability of the metal and – parallel – reduces the sensitivity against 

corrosion. The corrosive environment was sodium chloride that increases the rate of pitting 

corrosion with destroying the passive layer and initialization of shallow or deep pits. The 

stainless steels are more sensitive to pitting than to general corrosion. The self-assembled 

layer deposition time affects the quality of the nanolayer: longer time results in better 

protection. But too long (48 h) adsorption allows formation of irregular second nanolayer 

with “islands” of the amphiphilic molecules that do not improve the anticorrosion activity. 

These experiments also proved that the presence of Cr alloying metal in the steel at higher 

concentration can reduce the corrosion processes better and increase the anticorrosion 

activity, which is mainly due to higher chromium oxide surface layer. 
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