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Using Hybrid of Block-Pulse Functions and Bernoulli Polynomials to Solve 
Fractional Fredholm-Volterra Integro-Differential Equations

(Menggunakan Fungsi Blok-Denyut Hibrid dan Polinomial Bernoulli untuk Menyelesaikan Persamaan Pembezaan-
Integro Fredholm-Volterra Pecahan)

ABBAS SAADATMANDI* & SAMIYE AKHLAGHI 

ABSTRCT

Fractional integro-differential equations have been the subject of significant interest in science and engineering problems. 
This paper deals with the numerical solution of classes of fractional Fredholm-Volterra integro-differential equations. 
The fractional derivative is described in the Caputo sense. We consider a hybrid of block-pulse functions and Bernoulli 
polynomials to approximate functions. The fractional integral operator for these hybrid functions together with the 
Legendre-Gauss quadrature is used to reduce the computation of the solution of the problem to a system of algebraic 
equations. Several examples are given to show the validity and applicability of the proposed computational procedure.

Keywords: Bernoulli polynomials; Block-pulse functions; fractional integro-differential equations; hybrid functions; 
Caputo derivative

ABSTRACK

Persamaan pembezaan integro pecahan telah menjadi subjek penting dalam masalah sains dan kejuruteraan. Makalah 
ini berkaitan dengan penyelesaian berangka kelas persamaan pembezaan integro Fredholm-Volterra pecahan. Terbitan 
pecahan diterangkan dalam maksud Caputo. Fungsi hibrid blok-denyutan dan polinomial Bernoulli dipertimbangkan 
untuk penghampiran fungsi. Pengoperasi kamiran pecahan untuk fungsi hibrid bersama-sama dengan kuadratur 
Legendre-Gauss digunakan untuk mengurangkan pengiraan penyelesaian masalah kepada sistem persamaan algebra. 
Beberapa contoh diberikan untuk menunjukkan kesahihan dan kebolehgunaan prosedur pengiraan yang dicadangkan.

Kata kunci: Fungsi blok-denyutan; fungsi hibrid; persamaan pembezaan integro pecahan; polinomial Bernoulli; terbitan 
Caputo

INTRODUCTION

The study of the fractional derivative has its origins in 
1695. Leibniz and L’Hospital can be considered as the 
first two mathematics to discuss on fractional derivative 
(Kilbas et al. 2006). In recent years, the study of fractional 
differential equations and fractional integro-differential 
equations (FIDEs) has gained high interest because of 
its considerable application in science and engineering 
(Abdullah 2013; Abuasad & Hashim 2018; Dascioglu & 
Bayram 2019; Kilbas et al. 2006; Miller & Ross 1993; 
Podlubny 1999; Saadatmandi & Dehghan 2011a, 2011b). 
FIDEs occur in many physical processes such as chemistry, 
electromagnetism, acoustics, and viscoelastic materials 
(Kilbas et al. 2006; Miller & Ross 1993; Podlubny 1999). 
Unfortunately, analytic solutions of the most FIDEs cannot 
be obtained explicitly, therefore, numerical techniques 
must be used. In the past two decades or so, considerable 
numerical methods to solve FIDEs have been given such 
as collocation method (Rawashdeh 2006; Saadatmandi 
& Dehghan 2011a; Saadatmandi et al. 2018), Adomian’s 
decomposition method (Mittal & Nigam 2008; Momani 

& Noor 2006), variational iteration method (Kurulay 
& Secer 2011), fractional differential transform method 
(Arikoglu & Ozkol 2009), modification of hat functions 
(Nemati & Lima 2018), hybrid functions (Mashayekhi & 
Razzaghi 2015), Taylor expansion method (Huang et al. 
2011), Sinc-collocation method (Bayram et al. 2018) and 
the wavelet method (Meng et al. 2015; Saeedi et al. 2011; 
Zhu & Fan 2012).

In this paper, we study the numerical solution 
of following fractional Fredholm-Volterra integro-
differential equation (Rahimkhani et al. 2017) 

	

        D v y(x) = λy(x) + g(x) +        k1 (x, t) [y(t)]q1                                               

       
                                                                         

                                                                               

                                                                         (1) 

             
             0 ≤ x, t ≤ 1, n - 1 < v ≤ n, 0 ≤ v1 v2 ≤ v.
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with initial conditions 
	

             y (k) (0) = µk,  k = 0, 1,  ..., n - 1.             (2)

Wherever, the mentioned functions g, k1 and k2 are real-
valued functions.  Also, k1, and k2 are assumed to be 
separable kernels. In addition, λ, λ1, λ2, µk,  k = 0, 1,  ..., n 
- 1 are real given numbers and qi, i = 1, ..., 4, are positive 
integers. Here, Dv,  Dv  and  Dv  are the Caputo type 
fractional derivatives of order v, v1 and v2 respectively.

The literature of numerical methods contains little 
on the solutions of (1). Rahimkhani et al. (2017) used 
fractional-order Bernoulli functions for solving (1). Also, 
for the case of q2 = q4 = 0 , Keshavarz et al. (2019) applied 
Bernoulli wavelets to approximate solutions of (1). 
Moreover, Meng et al. (2015) used the Legendre wavelets 
method to solve (1) with λ = q2 = q4 = 0 and  q1 = q3 = 1.

The main idea of this work is to apply a hybrid 
of block-pulse functions and Bernoulli polynomials 
together with the collocation method to solve the 
problem (1)-(2). The main advantage behind this approach 
is that it reduces the solution of fractional Fredholm-
Volterra integro-differential (1) to those of solving a 
system of algebraic equations thus seriously simplifying 
the problem. Numerical methods based on the hybrid 
functions of block-pulse and Bernoulli polynomials are 
a nice and powerful approach for the numerical solution 
of problems arising from engineering applications 
including optimal control of delay systems (Haddadi 
et al. 2012), nonlinear constrained optimal control 
problems (Mashayekhi et al. 2012), fractional Volterra 
integro-differential equations (Mashayekhi & Razzaghi 
2015), multi-delay systems (Mashayekhi et al. 2016) 
and fractional Bagley-Torvik equation (Mashayekhi & 
Razzaghi 2016).

This paper is organized in the following way: in the 
next section, some basic results of fractional calculus 
and some properties of the hybrid of block-pulse 
functions and Bernoulli polynomials required for our 
subsequent development are given. In subsequent section, 
the new method proposed in this paper is presented. In 
the following section, some numerical results are given 
to clarify the method. Last section contains a brief 
conclusion.

PRELIMINARIES AND NOTATIONS

 THE FRACTIONAL DERIVATIVE AND INTEGRAL

Definition 2.1 The Riemann-Liouville fractional integral 
of order α is defined as (Podlubny 1999)
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where (.)Γ is the Gamma function. 

Definition 2.2 The Caputo fractional derivative with order 
α > 0 is defined by (Podlubny 1999)

                                                                     (4)

We have the following properties (Podlubny 1999):  

1. Dα C = 0      (C is a constant).

2.  

where .   is the ceiling function and m∈N  

3.  Dα  and Iα are linear operators. 

4. Dα  Iα  f (t) = f (t). 

5. Iα   (Dα    f (t)) = f (t)                 (0+) tk , 

                           n - 1 < α ≤ n, n∈N, t > 0. 

6.  Dα  f (t) = Im-α Dm f (t),  m∈N

HYBRID OF BLOCK-PULSE FUNCTIONS AND BERNOULLI 
POLYNOMIALS

The well-known Bernoulli polynomials of the order m are 
defined in the interval [0, 1] with the following formula 
(Costabile et al. 2006)  

                                                                 (5)

where Bernoulli numbers αk , can be defined by Costabile 
et al. (2006)

	

                                                                              
(6)

The Bernoulli numbers αk are rational numbers and the 
first few are 

	

      α0 = 1,  , α1 =     , α2 =        , α4 =     , α6 =         .

It can be shown that α2k+1 = 0 for k ≥ 1. Now, hybrid 
functions bnm(t), n = 1, 2, ..., N, m = 0, 1, ..., M, are defined 
on the interval [0, 1] as (Mashayekhi et al. 2012)
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                                                                  (7)
 

Here, m and n are the order of Bernoulli polynomials and 
block-pulse functions, respectively.

Function approximation and error estimation

Let H = L2 

 
 Y = span {b10(t), b20(t), ..., bN0(t), b11(t), b21(t), ..., bN1(t)..., 

b1M(t), ..., bNM(t)}.

Clearly, Y H, thus any 
function f  H  has a best unique approximation out of  
Y (Mashayekhi et al. 2012). That is, given f  H there 
exists        f Y such that 

 
                                 f -       f   ≤   f - y  ,

for all y Y 
c10, c20, ..., cNM such that 

                    f ~                                                         (8)

where 
 

10 0 11 1 1= [ ,..., , ,..., ,..., ,..., ] ,T
N N M NMC c c c c c c   (9)

and 
 

 

                                                                              (10)

The following error bound was proved in (Mashayekhi 
et al. 2016).

Theorem 2.3 Suppose f  Hµ[0, 1] with µ 0, and M ≥ 
µ - 1 , then 

                    f -                     ≤ cM- µN - µ     f (µ)

and for r ≥ 1, 

 

where c depends µ on . 
 

Riemann-Liouville fractional integral operator for B(t)
The fractional integration of the B(t
given by 

                                                              (11)

where 
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                                                                                  (12)

and I α bnm (t) is obtained from (Mashayekhi & Razzaghi 
2016, 2015) 

where 
 

LEGENDRE-GAUSS QUADRATURE

Suppose that =0{ }n
q qτ are the distinct roots of the Legendre 

polynomial of degree n + 1 . The (n + 1) -point Legendre-
Gauss quadrature rule for approximating integral of a 
function g(t) over the interval (a, b) , is given by (Canuto 
et al. 1988)
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(1)-(2). For this purpose, we let 
 

                                                                          (16)

Thanks to (16) and in the presence of some properties of 
fractional integration, we have 

 
                                                                               (17)

Employing (2), (11) and (17) we get 

                                                                 (18)

also, using (17) we obtain 

Substituting (16), (18) and (19) into (1) gives 
 

 

                                                                  (20)

Now, by collocating (20) at N (M + 1) points x = xi and by 
using Legendre-Gauss quadrature rule (14), we get

Here, we use uniform collocation points 
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τj are Legendre-Gauss weights and nodes, respectively. 
Therefore, (21) generate a set of N (M + 1) nonlinear 
algebraic equations, which can be solved for the unknown 
vector C. Throughout this paper, we use Maple’s fsolve 

C from this system 
of algebraic equations.

NUMERICAL EXAMPLES

In this section, we present some examples to illustrate 

the problem (1)-(2). We implemented our method in a 
personal computer with 3.40 GHz Intel Core 7.  Also, we 
use 5-point Legendre-Gauss quadrature rule.

Example 4.1 

2010)

                                                                                    (23)
   

with the initial condition y (0) = 0. . 

The exact solution, when = 1v , is                                  .

                      To solve this problem by the present method, let Dvy   )x(
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Finally, we have N (M + 1) algebraic equations. 
By solving these equations, the unknown vector C is 
obtained. The numerical results for y(x) with N = 1, M 
= 5 and v = 0.7, 0.8, 0.9, 1 are plotted in Figure 1. From 
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and CPU times (in seconds) by choosing v = 1, m = 5 
together with N = 2, 3, 4 are reported.  In this table, we 
also compare our method with M = 5 and different values 

of N together with the results obtained with M = 5 by 
using the fractional-order Bernoulli functions given in 
Rahimkhani et al. (2017).

FIGURE 1. Comparison of y(x) for N = 1, M = 5and with v = 0.7, 0.8, 0.8, 1  for Example 4.1

FIGURE 2. Graph of absolute error function for different values of M and with N = 1 (left) and N = 2 (right) for 
Example 4.1
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TABLE 1. The comparison of absolute errors between the present method and the result given in (Rahimkhani et al.  
2017) for Example 4.1

x
Method of

(Rahimkhani et al. 2017)                     
(M = 5)

Present method
(M = 5)

N = 2 N = 3 N = 4

0.2 5.23 x 10-6 4.43 x 10-8 1.94 x 10-9 2.65 x 10-10

0.4 1.18 x 10-6 4.65 x 10-8 1.07 x 10-8 1.04 x 10-9

0.6 1.00 x 10-5 5.00 x 10-7 1.19 x 10-8 3.30 x 10-9

0.8 1.41 x 10-5 5.25 x 10-5 5.54 x 10-8 1.20 x 10-8

CPU

time(s)
Not reported 

Example 4.2 Consider the nonlinear fractional Fredholm 

by 
 

                                                      (25)

with the initial condition y(0) = 0 
The exact solution, when v = 1,  , is y(x) = x . According 
to (21), we obtain 

                                                                    

                                               
                 
                                                                      (26)

which is a nonlinear system of algebraic equations. By 
solving this system we can obtain the unknown vector 
C . The numerical results for N = 1, M = 5 and for 

v are shown in Figure 3. Once again, 
from Figure 3, we see that as v → 1 , the approximate 
solutions converges to the exact solution. Not that, for 
v = 1, By choosing, M = N = 1  we get the exact solution. 
However, with the technique presented in Zhu and Fan 
(2012), the exact solution cannot be obtained. In addition, 
for v = 1, the CPU  time of our method is 0.904 second.
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FIGURE 3. Comparison of y(x) for N = 1, M = 5 and with v = 0.7, 0.8, 0.9, 1 for Example 4.2
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integro-differential equation given in Zhu dan Fan (2012)
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Example 4.3 Consider the following fractional mixed 
Fredholm-Volterra integro-differential equation (Meng et 
al. 2015)

                                                         (27)

with the initial conditions y(0) = y’(0) = y’’(0) = 0, and  

The exact solution is y(x) = x2. For this problem, (21), 
generate the following linear system of algebraic 
equations: 

12.3

0 0

1 1( ) = ( ) ( ) ( ) ( ) , 0 1,
4 2

x
D y x g x x t y t dt xty t dt x+ − + ≤ ≤∫ ∫

12.3

0 0

1 1( ) = ( ) ( ) ( ) ( ) , 0 1,
4 2

x
D y x g x x t y t dt xty t dt x+ − + ≤ ≤∫ ∫

1.2 5.5(4.5) 1 1( ) = .
(2.2) 99 11

g x x x xΓ
− −

Γ

                                                                                 (28)

In Figure 4, the logarithmic graphs of absolute error 
functions are plotted for various values of M and  N. From 
this figure, we can find that the errors decay as M and N 
increases. Moreover, for the purpose of comparison, in 
Table 2 we compare the absolute error of our method with 
N = 2 and different values of M together with the results 
obtained by using Adomian decomposition method 
(ADM) and the Legendre wavelets method (LWM) given 
in Meng et al. (2015). In addition, in Table 2, the CPU 
times of our method are reported.

=0 =0

1 1( ) ( ) ( ) ( ,2.3) ( ,2.3)
8 4
= 0, = 0,1,..., ( 1) 1.

n n
T T T

j ji i i j i ij ij i j
j j

C B x g x x x z C B z x z C B z

i N M

ω ω− − − −

+ −

∑ ∑
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8 4
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C B x g x x x z C B z x z C B z

i N M

ω ω− − − −

+ −

∑ ∑
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j ji i i j i ij ij i j
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i N M
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+ −
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FIGURE 4. Graph of absolute error functions for various values of M and N for Example 4.3
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TABLE 2. The comparison of absolute errors at some points for the present method and the result given in (Meng 
et al. (2015) for Example 4.3 

x
LWM Present method

m = 2, k = 4 m = 2, k = 5 n = 5 M = 6, N = 2 M = 7, N = 2

1/8 4.87 x 10-5 6.64 x 10-5 1.02 x 10-5 9.89 x 10-6 6.76 x 10-6

2/8 8.92 x 10-5 4.53 x 10-5
4.20 x 10-5 2.47 x 10-5 1.69 x 10-5

3/8 7.09 x 10-5 3.14 x 10-5
9.24 x 10-5 4.21 x 10-5 2.89 x 10-5

4/8 2.36 x 10-4 7.37 x 10-5  4.17 x 10-4 6.15 x 10-5 4.20 x 10-5

5/8 7.11 x 10-4 2.44 x 10-4 8.16 x 10-4 8.16 x 10-5 5.70 x 10-5

6/8 2.51 x 10-3 3.81 x 10-4 2.31 x 10-3 1.03 x 10-4

 
7.30 x 10-5

7/8 3.04 x 10-3 6.02 x 10-4 8.07 x 10-3 1.25 x 10-4 9.02 x 10-5

CPU 
time(s) Not reported Not reported Not reported 0.530 0.546

Example 4.4 Consider the following nonlinear fractional 
mixed Fredholm-Volterra integro-differential equation  
(Meng et al. 2015)

	

                                                               (29)

with the initial conditions y(0) = y’(0) = y’’(0) = 0 and

                  g(x)

The exact solutin of this problem is y(x) = x3. Here, (21), 
generate the following m = N (M + 1) nonlinear system of 
algebraic equations:

12.2 2 3

0 0

1 1( ) = ( ) ( )[ ( )] ( )[ ( )] , 0 1,
3 4

x
D y x g x x t y t dt x t y t dt x+ + + − ≤ ≤∫ ∫

12.2 2 3

0 0

1 1( ) = ( ) ( )[ ( )] ( )[ ( )] , 0 1,
3 4

x
D y x g x x t y t dt x t y t dt x+ + + − ≤ ≤∫ ∫ For the purpose of comparison of our method with the 

Legendre wavelets method (LWM) and CAS wavelet 
method (CASW) given in (Meng et al. 2015) we define
l∞ norm of absolute errors by 

	

where y is the exact solution; and ym is the approximate 
solution. The results are summarized in Table 3. Also, 
in Table 3, the CPU times of our method are reported. 
According to Table 3, we find that the presented method 
provides accurate results.  

1
= {| ( ) ( ) |},maxm i m i

i m
e y x y x∞

≤ ≤
− 

2 3

=0 =0

1 1( ) ( ) ( ) ( ,2.2) ( ) ( ,2.2)
6 8
= 0, = 0,1,..., ( 1) 1.

n n
T T T

j ji i i j i ij ij i j
j j

C B x g x x x z C B z x z C B z

i N M

ω ω   − − + − −   

+ −

∑ ∑
2 3

=0 =0

1 1( ) ( ) ( ) ( ,2.2) ( ) ( ,2.2)
6 8
= 0, = 0,1,..., ( 1) 1.

n n
T T T

j ji i i j i ij ij i j
j j

C B x g x x x z C B z x z C B z

i N M

ω ω   − − + − −   

+ −

∑ ∑ 2 3

=0 =0

1 1( ) ( ) ( ) ( ,2.2) ( ) ( ,2.2)
6 8
= 0, = 0,1,..., ( 1) 1.

n n
T T T

j ji i i j i ij ij i j
j j

C B x g x x x z C B z x z C B z

i N M

ω ω   − − + − −   

+ −

∑ ∑

TABLE 3. A comparison of me ∞  between the present method and the result given in Meng et al. (2015) for 

Example 4.4
LWM CASW Present method

m = 16 m = 32 m = 16 m = 32
m = 9 m = 20

(M = 8, N = 1) (M = 9, N = 2)

me ∞ 

4.43 x 10-3 2.14 x 10-3 7.84 x 10-2 5.24 x 10-3 7.85 x 10-4 1.89 x 10-4

CPU
Time(s) 0.823 2.427 Not reported 0.515 2.434

0.8 8(4) 5 1 1( ) = .
(1.8) 56 40 44

g x x x xΓ
− − +

Γ

(30)
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As an another approach to this problem, we choose N = 
1  and M = 0 . Let

3
10 10( ) = ( ) = ( )TD y x C B x c b x ,

thus similar to (17) we get 
	

3
10 10( ) = ( ,3) = ( ).Ty x C B x c I b x               (31)

Also, by using (31), we obtain 
	

                                                                            (32)

Substituting (31) and (32) in (29) and applying the 
Legendre-Gauss quadrature, we have 

	
	

                                                                   (33)

where x0 = 1/2 is a collocation point. By solving this 
equation we get C10 = 6. Thus, using (31), we get y(x) = 
x3, which is the exact solution of the problem.

CONCLUSION

In this paper, a collocation method with a hybrid of block-
pulse functions and Bernoulli polynomials is successfully 
used to solve a class of fractional Fredholm-Volterra 
integro-differential equations. The method is easy to 
implement, and applications are demonstrated through 
several illustrative examples. The numerical results are 
in excellent agreement with those obtained in Meng et al. 
(2015) and Rahimkhani et al. (2017). Note that we have 
computed the numerical results using the Maple package.
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