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ABSTRACT

The k Satisfiability logic representation (kSAT) contains valuable information that can be represented in terms of 
variables. This paper investigates the use of a particular non-systematic logical rule namely Random k Satisfiability 
(RANkSAT). RANkSAT contains a series of satisfiable clauses but the structure of the formula is determined randomly 
by the user. In the present study, RANkSAT representation is successfully implemented in Hopfield Neural Network 
(HNN) by obtaining the optimal synaptic weights. We focus on the different regimes for k ≤ 2 by taking advantage of 
the non-redundant logical structure, thus obtaining the final neuron state that minimizes the cost function. We also 
simulate the performances of RANkSAT logical rule using several performance metrics. The simulated results suggest 
that the RANkSAT representation can be embedded optimally in HNN and that the proposed method can retrieve the 
optimal final state.
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ABSTRAK

Perwakilan logik k Kepuasan mengandungi maklumat berguna yang diwakilkan dalam sebutan pemboleh ubah. 
Kajian ini mengkaji penggunaan suatu peraturan logik yang tidak sistematik iaitu logik k Kepuasan Rawak (RANkSAT). 
RANkSAT mengandungi siri klausa penuh tetapi struktur rumusnya ditentukan secara rawak oleh pengguna. Dalam 
kajian ini, perwakilan RANkSAT berjaya dilaksanakan untuk Rangkaian Neural Hopfield (HNN) dengan memperoleh 
pemberat sinapsis yang optimum. Fokus diberikan kepada rejim berbeza bagi k ≤ 2 dengan menggunakan struktur logik 
yang tidak berulang dan justeru memperoleh secara optimal keadaan neuron akhir yang meminimumkan fungsi kos. 
Prestasi logik k Kepuasan Rawak disimulasi dengan menggunakan beberapa indikator prestasi tertentu. Keputusan 
simulasi menunjukkan perwakilan RANkSAT boleh dimasukkan secara optimum dalam HNN dan teknik yang telah 
dicadangkan berupaya memperoleh semula perwakilan neuron akhir yang optimum. 

Kata kunci: Kepuasan rawak; rangkaian neural buatan; rangkaian neural Hopfield; pengaturcaraan logik 

INTRODUCTION

Artificial Neural Networks (ANNs) are computing models 
that can be applied to identify and resolve a specific problem 
according to the appropriate objective function and 
patterns. These capabilities allow ANNs to be considered 
as techniques for solving large categories of optimization 
problems including scheduling problems (Sharma & 
Garg 2020), complex valued analysis (Kobayashi 2019) 
and health management (Liu et al. 2020). Generally, 
conventional ANN are expected to generate an implicit, 
qualitative, and predictive model that solves a problem 
with high accuracy in the fastest possible time. In layman 
terms, ANN acquire the learnable behaviour based on the 
experience (previous data), generate the learned pattern 

(synaptic weight) and solves the problem via the learned 
pattern. An early and simple ANN is Hopfield Neural 
Network (HNN). HNN is a simple ANN that capitalizes on 
the importance of the input and output layer in finding the 
optimal synaptic weight (Hopfield & Tank 1985). HNN has 
been shown to be useful in various types of optimization 
problems such as games (Fitzsimmons & Kunz 2020), and 
image encryption (Wang & Li 2019). Despite the recent 
and rapid development in HNN, minimal attention has 
been given to represent the output of HNN in the form of 
symbolic rules. 

Representing the problems of non-deterministic 
polynomial time by transforming them to a propositional 
satisfiability (SAT) logical rule has been a successful 
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strategy to address various industrial issues involving 
constraint Satisfaction problem. In order to develop 
an integrated approach, a number of scholars have 
established the SAT as a universal language for logic and 
reasoning and declarative logic. The main question that 
fascinates researchers is: how neural networks behave 
according to the propositional logic? This is because this 
paradigm attempts to represent the output of the neural 
networks using symbolic system. The combination of 
logic programming into ANN must take into account the 
synaptic weight structure which will result in the correct 
neuron updates. Pinkas (1991) asserts that the connectionist 
ANN model with symmetric weight can be represented 
as a Quadratic Energy Function. The minimization of 
the energy corresponds to the possible solution of the 
constraint optimization problem. The first attempt to 
incorporate propositional logical rule with neural network 
was by Abdullah (1992). In this paper, the logical rule 
is embedded into Hopfield Neural Network (HNN) by 
comparing the cost function with the Lyapunov energy 
function. The target of creating an improved version of 
logic programming in HNN was continued by Sathasivam 
(2010). In this paper, systematic relaxation method is 
implemented to reduce unnecessary neuron oscillation. In 
another development, Hamadneh et al. (2012) proposed 
logic programming in Radial Basis Function Neural 
Network (RBFNN). The proposed RBFNN obtained the 
output weight by minimizing the error metric between 
the output layer and the hidden layer. Information about 
this network can be found in Hamadneh et al. (2012) and 
Mansor et al. (2020). Regarding the logical structure, 
several developments stemmed from the idea of creating 
systematic logical rule. Kasihmuddin et al. (2017) and 
Mansor et al. (2017a) proposed the first systematic logical 
rule namely kSAT into HNN. The proposed methods 
managed to retrieve the correct final state up to 90% of 
the time. These findings inspired other applications to 
incorporate kSAT in HNN. Several simulated applications 
such as Very Large-Scale Integration (Mansor et al. 
2016a), Bezier curve reconstruction (Kasihmuddin et al. 
2016), Pattern Satisfiability (Mansor et al. 2016b). The 
robustness of the proposed method has been extended 
to logic mining via k Satisfiability Reverse Analysis 
Method (kSATRA). The proposed logic mining attracted 
several applications such as e-sport (Kho et al. 2020), 
disease screening (Kasihmuddin et al. 2018a), social 
media (Mansor et al. 2018) and student performance 
(Kasihmuddin et al. 2019a). It is worth pointing out that 
the proposed logic mining achieves an acceptable range 
of accuracy. Since then, systematic logical rule became 
the main impetus for the development of several kSAT 
variant such as Maximum k Satisfiability (Kasihmuddin 

et al. 2018b) and randomized 2 Satisfiability (Mansor 
et al. 2020). However, there has not been much effort 
to implement non-systematic logical rule into neural 
network. Non-systematic logical rule provides flexibility 
for the real dataset to be represented by the neural network. 

The study of random instance in Boolean SAT has 
been a major research focus in recent years due the 
random input structure that contribute to only 2 output 
states. Maneva and Sinclair (2008) proposed 3SAT that 
consist of random instances. This study illustrates the 
use of random selection that constitute the 3SAT formula 
by successfully implemented possible assignment with 
the defined threshold. The random structure in SAT has 
been beneficial for several applications. Gao (2009) has 
reported interesting random structure of Weighted SAT 
that capitalize several form of SAT formulas. In this 
work, the proposed threshold in SAT contributed toward 
the development of the data reduction. Worth mentioning 
that, several interesting studies that implemented Random 
notion can be found in Amendola et al. (2020), Fan and 
Shen (2011), and Schawe et al. (2019). The common 
ground of all of the mentioned studies are the use of 
Random SAT to represent their case. The main idea of 
the implementation of Random SAT is the flexibility 
to represent the number of literals that is not limited to 
only k variable per clause. To the best of our knowledge, 
there is no recent integration of Random kSAT as a 
logical rule in ANN. In our study, kSAT is extended to non-
systematic logical rule by incorporating random structure 
into the logical formula. The underlying assumption of 
the proposed logical rule is to represent the formula in a 
random and flexible manner. Thus, the contributions of 
the current paper are: A novel Random k Satisfiability 
(RANkSAT) is proposed by implementing the random 
structure that involves first and second order Satisfiability 
logical rule. Implementation of RANkSAT into HNN by 
creating a learning phase that minimizes the cost function 
of the HNN. A comprehensive analysis of the RANkSAT for 
both learning and retrieval phase. An effective HNN model 
incorporating the new logical rule was constructed and 
the proposed network is seen to be beneficial in finding the 
correct approximate solution for various non-deterministic 
problem such as scheduling, control theory and function 
approximation. 

The rest of the paper is organized as follows: The 
novel non-systematic logical rule namely Random k 
Satisfiability (RANkSAT) are given in the next section. The 
proposed RANkSAT will be implemented in HNN in the 
subsequent section. The methods and experimental setup 
will be given in the next two sections. The simulation of 
the RANkSAT HNN will be discussed thoroughly after 
that. Finally, concluding remarks are given in last section.
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MATERIALS AND METHODS

THE PROPOSED RANDOM K SATISFIABILITY (RANKSAT)

Random k Satisfiability (RANkSAT) is a logical 
representation which consists of a non-systematic number 
of literal per clause.  RANkSAT is a variant of Boolean 
formula that usually represented in Conjunctive Normal 
Form (CNF) where each clause contains random number 
of variables. The general equation for RANkSAT is as 
follows
					   

 (1)

 𝑛𝑛,𝑚𝑚 ∈ ℤ+ and the definition of the clause in RANkSATP  
is given by:

					   
 (2)

where { }* ,i i iA A A∈ ¬ , { }* ,i i iB B B∈ ¬  and { }* ,i i iD D D∈ ¬  
The first and second order clause are given as ( )1

iC  
and ( )2

iC , respectively. The choice of variable (Positive 
or Negative literal) is determined randomly. In this 
case, rF  is a Conjunctive Normal Form (CNF) formula 
where the clauses are chosen uniformly, independently 

without replacement among all 2r m n
r
+ 

 
 

 non-trivial 

clause of length r . Note that, *
iA  exists in the ( )k

iC , if 
the ( )k

iC  contains either iA  or iA¬  and the mapping of 
( ) { }1,1rV F → −  is called logical interpretation. According 

to Kho et al. (2020), the Boolean value for the mapping is 
defined as 1 (TRUE) and -1 (FALSE). One of the examples 
for RANkSAT formulation is:
   
 				     (3)

According to (3), RANkSATP  consist of ( ) ( )2
1 1 1C A B= ∨¬  

( ) ( )2
2 2 2C A B= ¬ ∨  and ( )1

1 1C D= ¬ . Thus, the solutions for 
each of the outcomes in (3) could be diversified as more 
combinations of solution correspond to different form of 

RANkSATP . Note that, the outcome of (3) is 1RANkSATP = −  
if  ( ) ( )1 2 1 2 1, , , , 1,1,1,1,1A A B B D =  with 2 clauses are 
satisfied ( ) ( )( )2 1

1 2,C C .  Additionally, 1RANkSATP = −  if 
( ) ( )1 2 1 2 1, , , , 1, 1, 1, 1,1A A B B D = − − − −  with 2 clauses are 
satisfied ( ) ( )( )2 1

1 2,C C  is also the alternative solution of 
attaining the condition of the stated RANkSATP  in (3). In this 
paper, we limit our investigation to 2k ≤  by considering 
only first and second order logical rule.

RANkSAT IN HOPFIELD NEURAL NETWORK

The prominent structure of Hopfield Neural Network 
(HNN) involves the interconnected bipolar neurons 
without the intervention of hidden neurons (Hopfield & 
Tank 1985). The synaptic weights are strictly symmetrical, 
without self-mapping among the respective neurons. 
Due to the capability of Content Addressable Memory 
(CAM), it is considered as the dynamic storage system for 
the synaptic weights (Sathasivam 2010). Given an initial 
vector that is mapped to the neuron state Si = (S1, S2, S3, ..., 
SN)  and without any assistance of noise, the HNN will 
converge to the equilibrium that correponds to the nearest 
minimized pH  (Barra et al. 2018). Hence, the final state of 
the HNN corresponds to the solution of the combinatorial 
problem. The neurons in HNN are considered bipolar, 

( )1,1iS ∈ −  conform to the dynamics ( )sgni iS h→ . The 
general asynchronous updating rule of HNN is given by:
                       

	

                             

  (4)

where ijW  describes the synaptic weight matrix of HNN that 
establishes the strength of the connections from neuron j 
to i with pre-determined bias β . In this work, the HNN is 
adopted as the central network in RANkSATP  programming. 
The formalism of logic programming in HNN does not 
impose any restriction on the accepted type of clauses 
as long as the proposed propositional logic is satisfiable 
(Abdullah 1996). RANkSATP  can be embedded into HNN 
by assigning each variable into m+ n  neuron. The firing 
structure of the neuron are based on the defined cost 
function. Hence, the cost function 

RANkSATPE  that governs 
the combinations of HNN and RANkSATP  is: 
                      

1 1
RANkSAT

m nNC

P ij
i j

E T
+

= =

=∑∏
				  

	  
(5)

where NC and m n+  are the number of clauses and the 
number variables in 

RANkSATP  respectively. Note that, the 
inconsistency of RANkSATP  is given as:
                    				         

 (6)

Note that, the value of 
RANkSATPE  is proportional to the 

number of ‘inconsistencies’ of the clause ( )1k
iC = − . The 

more k
iC  that is unsatisfied, the bigger the value of 

RANkSATPE  
Minimum 

RANkSATPE  corresponds to the ‘most consistent’ 
selection of iS . Hence, the updating rule for RANkSATP  in 

( ) ( )2 1

0 0

n m

RANkSAT i ii i
P C C

= =
= ∧ ∧

Ci
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HNN is defined as:
                    	

			         (7)
   				     

     (8)

where ( )2
ijW  and ( )1

iW  are second and first order synaptic 
weights of the embedded RANkSATP .  Equations (7) and 
(8) are important to ensure the neurons iS  will always 
converge to 0RANkSATE → . In order to evaluate the 
quality of the retrieved iS , we utilize the Lyapunov energy 
function, 

RANkSATPH , defined as:
          				  

(9)    

One of the properties of (9) is that energy portrayed from 
the RANkSATP  always decreases monotonically. The value of 

RANkSATPH  signifies the value of the energy with respect to 
the absolute final energy 

min
RANkSATPH  obtained from RANkSATP  

(Abdullah 1992). The value of min
RANkSATPH can be further 

calculated by using the following equation:
                              				        

(10)  

where ( )( )2
in Cθ =  and ( )( )1

in Cη =  that corresponds to 
RANkSATP . Hence, the quality of the final neuron state can 

be properly examined by checking the following condition:

                 
	  		     

  	 (11)     

where ∂  is the tolorence value pre-determined by the 
user. Note that, if the embedded RANkSATP  does not satisfy 
(11), the final state obtained is trapped in local minimum 
solution. It should be mentioned that, ( )2

ijW  and ( )1
iW  can 

be effectively obtained by using Wan Abdullah method 
(Abdullah 1992). Hebbian learning has been reported 
to produce oscillating neuron state that will result in sub 
optimal value of 

RANkSATPH . In this paper, the implementation 
of RANkSATP  in HNN is denoted as HNN-RANkSAT. Figure 1 
shows the schematic diagram for NN-RANkSAT.

( )
( )
( )

1 , 0

1, 0i

h t
S t

h t

 ≥= 
− <

( ) ( ) ( ) ( )2 1

1,

m n

ij j i
j i j

h t W S t W
+

= ≠

= +∑

( ) ( )2 1

1, 1, 1,

1
2RANkSAT

m n m n m n

P ij i j ij j
i i j j i j i i j

H W S S W S
+ + +

= ≠ = ≠ = ≠

= − −∑ ∑ ∑

min 2
4RANkSATPH θ η+ = − 

 

min
RANkSAT RANkSATP PH H− ≤ ∂

FIGURE 1.  Schematic diagram for HNN-RANkSAT
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SIMULATION STUDY

A simulation study was conducted to evaluate the 
performance of HNN model in analysing simulated 
datasets. The simulation was conducted in DEV C++ 
Version 5.11 in Windows 10, using an Intel Core i3 with 
1.7 GHz processor. In order to make a fair comparison, HNN 

model was terminated after being executed more than the 
threshold computation time (24 h). The main task of the 
HNN model is to retrieve the neuron state that corresponds 
to the proposed RANkSATP . The parameters involved for the 
HNN-RANkSAT are listed in Table 1.

TABLE 1. List of parameters for HNN-RANkSAT 

Parameter Parameter value

Neuron Combination (z) 100

Tolerance Value 0.001

        selection Random

         selection Random

         selection Random

         
selection Random

No_Neuron String 100

Relaxation 3 (Sathasivam 2010)

Selection_Rate 0.2

Activation Function Hyperbolic Activation Function
(Mansor & Sathasivam 2016)

n Ci
1( ) +Ci

2( )( ) ( ) ( )1 210 20i iC C≤ + ≤

( )∂

Si
1( )

Si
2( )

Ci
1( )

Ci
2( )

The global minima ratio (Zm) can be defined as the 
ratio between the number of global minimum solution 
with the total number of solution (Kasihmuddin et al. 
2019b). In this case, if the HNN-RANkSAT produces 10000 
final state, the maximum value for Zm is 1. In terms of 
energy profile, global minimum energy can be assumed 
as the absolute minimum energy that corresponds to 

0
RANkSATPE = . The definition of Zm is:

                                       
					   

  (12)

where z,  t, and 
GRANkSATWN  represent the neuron combination, 

the number of trials and the global minimum energy of the 
proposed model, respectively. For example, the value 
of Zm = 0.9 signifies 90% of the final state is achieved 
the optimal final state. Another performance metric that 
examines the efficiency of the proposed HNN is Root 

1

1
PRANkSAT

tz

i
HZm N

t z =

= ∑

Mean Square Error (RMSE) and Mean Absolute Error 
(MAE). RMSE measures the error deviation between the 
optimal fitness and the current fitness of the HNN model. 
Higher RMSE value signifies higher error deviation of the 
network during learning phase of HNN. In this paper, the 
RMSE value of the learning phase is:
						    

(13)

where NCf  and if  are optimal fitness and current fitness, 
respectively. In addition, MAE measures the absolute 
differences between the optimal fitness and the current 
fitness of the HNN model. The equation for MEA is:
	  				    	

(14)

( )2

1

1NC

NC i
i

RMSE f f
n=

= −∑

1

1NC

NC i
i

MAE f f
n=

= −∑
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Note that, 0NCf ≠  because the probability of all neuron 
state to be -1 for one single initialization is almost zero. 

The complete implementation of the HNN-RANkSAT is 
demonstrated in Figure 2. 

RESULTS AND DISCUSSION

The results of this study can be summarized into two main 
findings; the success of RANkSATP  learned by HNN, thus 
creating an optimal HNN-RANkSAT, and the capability 

FIGURE 2. Implementation of HNN-RANkSAT

of HNN-RANkSAT  to portray the behaviour of RANkSATP  
in a random environment. The synaptic weight of the 
HNN-RANkSAT is shown in Figures 3 and 4. The values 
of synaptic weight were computed based on the cost 

 

 

  

  

 FIGURE 3.  Synaptic weight for instance i =19 z = 100 
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function, 
RANkSATPE formed by the RANkSAT with respect 

to the unique inconsistencies of RANkSATP  as shown in 
(6). Based on Figures 3 and 4, for the case of RANkSATP  
the magnitude of the synaptic weight can be different but 
remain symmetrical with when 

RANkSATPE  being compared 
to (9) via Wan Abdullah method (Abdullah 1992). 
However, the main focus of the analysis in Figures 3 

FIGURE 4.  Synaptic weight for instance i =19 z = 100 

and 4 is to determine the positive and negative literal 
tendencies of the RANkSATP . These graphs show the synaptic 
weight obtained during the learning phase for both 

( )1
iC  and ( )2

iC  when 50% of ( )2
iC  is included into HNN-

RANkSAT. Note that, WB
2( )  for instance i = 19  in Figure 3, 

has a higher tendency for positive literal B  compared to 
negative literal D¬ . Similar observation can be deduced 
in Figure 4.  

  

  

  

  

 
 

FIGURE 5.  Zm evaluation for HNN-RANkSAT at z = 10, 50, 100 
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FIGURE 6.  RMSE evaluation for HNN-RANkSAT at z = 10, 50, 100 

 

  

 
 

FIGURE 7.  MAE evaluation for HNN-RANkSAT at z = 10, 50, 100 
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Figures 5 to 7 represent the performance of HNN-
RANkSAT in terms of Zm, RMSE and MAE respectively. 
Based on Figures 6 and 7, the RMSE and MAE values 
for HNN-RANkSAT were reported to increase as the 
number of neuron increase. For instance, at ( )1% 0.5iC =  
about 60% difference in the RMSE and MAE evaluation 
between NC = 10 as compared to NC = 20  during learning 
phase of HNN-RANkSAT. According to the RMSE and 
MAE value during learning phase, the proposed method 
manages to achieve 0

RANkSATPE =  for all the maximum 
combination z  despite high learning error as the number 
of neuron increases. The random structure of the RANkSATP  
increases the logical variation during the learning phase. 

( )2
iC  clause is observed to reduce the complexity of the 

RANkSATP  due to the dimension flexibility of the logical 
rule. In other words, ( )2

iC  is relatively feasible to achieve 
0

RANkSATPE =  compared to ( )1
iC . Although the Satisfiability 

of ( )1
iC  is guaranteed, the nature of exhaustive search 

will make it difficult for the HNN-RANkSAT to learn the 
inconsistent interpretation RANkSATP¬ . It is fair to report 
that RANkSATP  is expected to deal with higher learning 
complexity compared to Maximum Satisfiability (Mansor 
et al. 2017b), 2 Satisfiability (Kasihmuddin et al. 2017), 
HornSAT (Sathasivam 2010) and 3 Satisfiability (Mansor 
& Sathasivam 2016). This is because the mentioned works 
only deal with systematic logical rule that is relatively easy 
to be learned. 

Next, we discuss the retrieval capability. The retrieval 
capability can be assessed by analyzing the value of  Zm  as 
manifested in Figure 5. In general, the Zm  was reported to 
significantly reduce especially within ( )10.3 % 0.5iC≤ ≤  
This is due to more possible neuron oscilation during 
the retrieval phase as the number of neuron increases. 
Although the value of Zm  decreased as the number of 
neuron increase, HNN-RANkSAT retrieved almost 90% 
global minimum solution ( )1Zm →  for all cases of z. 
The proposed HNN-RANkSAT has a good agreement 
with the study of Kasihmuddin et al. (2018) where the 
Zm  obtained is approaching 1. The final neuron state 
of the HNN-RANkSAT exhibit the RANkSATP  behaviour 
by retrieving the final state that is corresponds to the 
condition in (11). It is seen in Figure 7 that the number of 
global minimum energy decrease as the number of neuron 
increase. In this case, the neuron state that corresponds to 
the behaviour of RANkSATP  can be visualized as a basin of 
attraction in the energy profile. Thus, 

RANkSATPH  that does 
not satisfy condition (11) is said to trapped in suboptimal 
solution. Despite the possible suboptimal behaviour of 

RANkSATP , HNN-RANkSAT always converges to the nearest 
minimum solution. Under these circumstances, stochastic 
methods such as simulated annealing (Grabust et al. 2019) 
can be expected to drive the final state from the local 
minimum to the global minimum energy. The optimal 

relaxation time step is shown to increase the accuracy of 
HNN-RANkSAT in retrieving more consistent final neuron 
state. The ease of optimization task (from suboptimal to 
optimal solution) is being called creativity of the HNN 
(Abdullah 1992). Therefore, the result obtained from the 
simulation illustrates that HNN-RANkSAT achieved the 
optimal storage capacity which implies good fault tolerance 
property.  In addition, the simulation only evaluates the 
retrieval capability of the HNN-RANkSAT. Metaheuristics 
algorithm such as Artificial Bee Colony and Artificial 
Immune System can be expected to optimize the learning 
phase of HNN-RANkSAT. From another perspective, the 
proposed RANkSATP  does not include the redundant logical 
variable because the Satisfiability of the redundant logical 
rule is not guaranteed.

CONCLUSION

Based on the results and discussion in the aforementioned 
section, some conclusions can be made from the study. 
First, a novel Random k Satisfiability logical rule namely 
RANkSAT has been developed by combining first and 
second order logical rule that is Satisfiable in nature. The 
proposed RANkSAT is structurally flexible and capitalize 
on the benefit of another logical rule such as 2 Satisfiability 
k = 2. Secondly, to the best of our knowledge, this is the 
first attempt to represent symbolic output of the HNN 
in terms of non-systematic logical rule. The proposed 
HNN-RANkSAT is functionally different from the existing 
systematic logical rule (Kasihmuddin et al. 2018; 
Mansor et al. 2016; Sathasivam 2010). In light of this 
new logical rule, we tested the capability HNN-RANkSAT 
in doing simulated datasets. The results of the simulation 
studies show that RANkSAT can be embedded into HNN 
by minimizing the cost function that corresponds to 
the inconsistencies of the network. We also discuss the 
performance of the HNN-RANkSAT in several performance 
metrics.

Some interesting open questions arise. For instance, 
what is the behaviour of the HNN-RANkSAT when 3k ≤  
This requires the use of other established logical rules 
such as 3 Satisfiability and Horn Satisfiability. Extending 
from that premise, the learning phase of HNN-RANkSAT, 
Metaheuristics Algorithm such as Binary Artificial Bee 
Colony (Jia et al. 2014) and Binary Whale Optimization 
(Reddy et al. 2019) are possible techniques in reducing the 
learning complexity. These works are currently in progress 
and thus are deferred to later articles.
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