메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터

주제분류

정기구독(개인)

소속 기관이 없으신 경우, 개인 정기구독을 하시면 저렴하게
논문을 무제한 열람 이용할 수 있어요.

회원혜택

로그인 회원이 가져갈 수 있는 혜택들을 확인하고 이용하세요.

아카루트

학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.

영문교정

영문 논문 작성에 도움을 드리기 위해, 영문 교정 서비스를
지원하고 있어요.

고객센터 제휴문의

...

저널정보

저자정보

표지
이용수
내서재
0
내서재에 추가
되었습니다.
내서재에서
삭제되었습니다.

내서재에 추가
되었습니다.
내서재에서
삭제되었습니다.

초록·키워드

오류제보하기
Bee traffic at the hive entrance can be used as an important indicator of foraging activity. We investigated the flight speed and patterns of honeybees and bumblebees near their hives as a basis for calculating bee traffic using the image deep learning. The flying speed of bumblebees (0.48±0.36 m/s) near the hive was 1.4 times faster than that of honeybees (0.35±0.21 m/s). The flight speed of honeybee leaving the hive (0.54±0.33 m/s) was 1.7 times faster than that when entering the beehive (0.32±0.18 m/s). Distance from the hive and flight speed showed a positive correlation (honeybee r=0.600, bumblebee 0.659), and a significant linear regression model was derived (honeybee R²=0.516, bumblebee 0.433). The flight pattern near the hive differed significantly according to bee at entering and leaving the hive. Honeybees mainly showed flight that changed flight direction more than once (69.5%), whereas bumblebees mainly performed straight flight (48.7%) or had a single turn (36.5%) in flight. When bees entered the hive, honeybees primarily showed one-turn or two-turn flight patterns (88.5%), and bumblebees showed a one-turn flight pattern (48.0%). In contrast, when leaving the hive, honeybees primarily showed a straight flight pattern (63.0%), and bumblebees primarily showed a straight or one-turn pattern (90.5%). There was a significant difference in flight speed according to the flight pattern. The speed of straight flight (0.89±0.47 m/s) was 1.5 to 2.1 times faster than flight where direction changed. In summary, the speed and pattern of bees returning to or leaving the hive were different to from to the hive, and there were also differences between bee species. Therefore, our results can help determine the ideal frame rate for effectively capturing and recognizing the flying image of bees when calculating bee traffic by image deep learning.

목차

Abstract
INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
LITERATURE CITED

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-527-000234524