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A matrix impression of algebras of unary multioperations of a finite rank and the list of the identities
which are carried out in such algebras are gained. These results are used for the proof of the main result:
descriptions of the minimal algebras of unary multioperations of a finite rank. As a result the list of all
such minimal algebras for small ranks is received.
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Introduction

Algebras of unary multioperations which are considered in this paper are finite algebras.
Description of minimal algebras is important to study the structure of these algebras [1]. A de-
scription of all algebras of unary multioperations of rank 3 was obtained in [2]. The main result
of this paper was announced in [3]. We note that algebras of unary multioperations are used for
the study of the superclones and hence the clones [4].

Let B(A) be the set of all subsets of A. A mapping from A into B(A) is called unary
multioperation on A. The set of all unary multioperations on A will be denoted by M1

A.
Multioperation f on finite set A = {a0, . . . , ak−1} can be represented as mapping

f : {20, 21, . . . , 2k−1} → {0, 1, . . . , 2k − 1},

which is obtained from f by coding ai → 2i;∅ → 0; {ai1 , . . . , ais} → 2i1 + · · ·+ 2is .
And multioperation f is represented by vector (α0, . . . , αk−1), where f(ai) = αi, using the

coding.
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Let S ⊆ M1
A. Algebra F =< S; ∗,∩, µ, ε, θ, π > with operations of substitution (f ∗ g),

intersection (f ∩ g), reversibility (µf) and nullary operations ε, θ, π is called algebra of unary
multioperations on A:

(f ∗ g)(a) = {b| there exists c ∈ g(a) such that b ∈ f(c)};
(f ∩ g)(a) = f(a) ∩ g(a);
(µf)(a) = {b|a ∈ f(b)};
ε(a) = {a};
θ(a) = ∅;
π(a) = A.
The power of set A is called rank of algebra. Further we believe that rank is finite and equal

k > 2.
We note some simple properties of operations of algebra of unary multioperations:

f ∗ (g ∗h) = (f ∗ g) ∗h, f ∩ (g∩h) = (f ∩ g)∩h, f ∩ g = g∩ f , µ(µf) = f , µ(f ∩ g) = µf ∩µg,
µ(f ∗ g)=µg ∗ µf , f ∗ ε= ε ∗ f = f , θ ∗ f=f ∗ θ=θ, f ∩ π=f , f ∩ θ=θ, µε=ε, µθ=θ, µπ=π.

There is the following matrix representation of algebras of unary multioperations.
Let B =< {0, 1}; ∗,+ > be two-element Boolean algebra. Boolean matrices are binary

matrices on the elements which define the Boolean operations.
For unary multioperation f on A we define Boolean square matrix Mf = (αij) of order k as

follows: αij = 1 if ai ∈ f(aj) else αij = 0.
Operations of algebra of unary of multioperations are represented by matrix operations in

the following way:
Mf∗g = Mf ∗Mg is matrix multiplication;
Mf∩g = Mf ◦Mg is element-wise matrix multiplication;
Mµf = MT

f is transposition of matrix;
Mε = E is diagonal matrix;
Mθ = O is null matrix;
Mπ = P is unit matrix.
For example, unary multioperation in vector form f = (3, 7, 1) is represented by matrix

Mf =

 1 1 1

1 1 0

0 1 0

 .

The main result

The smallest algebra which not equal trivial algebra consisting of only multioperations π, θ, ε
is called minimal algebra of unary multioperations. It is obvious that necessary and sufficient
condition for minimality of algebra of unary multioperations is the generating of any its multiop-
eration which not equal π, θ, ε. The following theorem describes the multioperations generating
minimal algebras of unary multioperations.

Theorem 1. Multioperation f on A which not equal π, θ, ε generates minimal algebra of unary
multioperations of rank k if and only if it satisfies one of the following conditions:
1) f ∩ ε = ε, µf = f , f2 = f ;
2) f ∩ ε = ε, µf = f , f2 = π;
3) f ∩ ε = µf ∩ f = ε, f ∗ µf = µf ∩ f = π, f2 = f ;
4) f ∩ ε = µf ∩ f = ε, f ∗ µf = µf ∩ f = π, f2 = π;
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5) f ∩ ε = θ, µf = f , f2 = π;
6) f ∩ ε = θ, µf = fp−1, fp = ε, where p is simple divisor of k;
7) There exists not empty set B ( A such that
either f(a) = B for all a ∈ A,
or f(b) = {b} for all b ∈ B and f(a) = ∅ for all a ∈ A \B,
or f(b) = A for all b ∈ B and f(a) = ∅ for all a ∈ A \B,
or f(b) = B for all b ∈ B and f(a) = ∅ for all a ∈ A \B.

Proof. The fact that the algebras generated by the multioperations f with these properties
will be minimal follows from the fact that

if conditions 1), 2), 5) are fulfilled then algebras consists of four elements π, θ, ε, f ;
if conditions 3), 4) are fulfilled then consists of five elements π, θ, ε, f, µf ;
if condition 6) is fulfilled then consists of p+ 2 elements π, θ, ε, f, f2, . . . , fp−1;
if condition 7) is fulfilled in case of one-element set A then consists of six elements

π, θ, ε, (0, . . . , 0, 2i
i
, 0, . . . , 0), (0, . . . , 0, 2k−1

i
, 0, . . . , 0), (2i, . . . , 2i),

else consists of seven elements
π, θ, ε, (2i1 + · · ·+ 2is , . . . , 2i1 + · · ·+ 2is), (0, . . . , 0, 2i1

i1
, 0, . . . , 0, 2is

is
, 0, . . . , 0),

(0, . . . , 0, 2k−1

i1
, 0, . . . , 0, 2k−1

is
, 0, . . . , 0), (0, . . . , 0, 2i1 + · · ·+ 2is

i1
, 0, . . . , 0, 2i1 + · · ·+ 2is

is
, 0, . . . , 0)

(here we specify that for the last three components of the non-zero elements are in positions
i1, . . . , is). In addition each multioperation other than π, θ, ε generates all elements of its
algebra.

We now show that any f generating a minimal algebra of unary multioperations will satisfy
one of the seven conditions of the theorem.

We consider the possible cases:
1. f ∩ ε = ε. It is clear that

⟨
f2

⟩
⊆ ⟨ f ⟩ and since f generates minimal algebra then it

holds either
⟨
f2

⟩
= ⟨ f ⟩ or

⟨
f2

⟩
= {π, θ, ε}. Since f ∩ ε = ε then units of matrix Mf stored

in matrix Mf2 . Hence in first case f2 = f , since else f ̸∈
⟨
f2

⟩
, and in second case it is obvious

that f2 = π.
1.1. If µf = f then first case corresponds condition 1) of the theorem, and second case —

condition 2).
1.2. Let µf ̸= f . By the properties of algebra operations multioperation g = f ∩ µf has

properties g ∩ ε = ε, g = µg. It is clear that ⟨ g ⟩ ⊆ ⟨ f ⟩ and since f generates minimal algebra
then it holds either ⟨ g ⟩ = ⟨ f ⟩ or ⟨ g ⟩ = {π, θ, ε}. By g ∩ ε = ε, g = µg in first case we
obtain ⟨ g ⟩ = {π, θ, ε, g} = ⟨ f ⟩ that is impossible in view of f ̸= g. From the second case
implies f ∩ µf = g = ε. Similarly we obtain that multioperation h = f ∗ µf has properties
h ∩ ε = ε, h = µh. Since ⟨h ⟩ ⊆ ⟨ f ⟩ and f generates minimal algebra then it holds either
⟨h ⟩ = ⟨ f ⟩ or ⟨h ⟩ = {π, θ, ε}. As above, the first case is impossible, and in the second case we
have f ∗ µf = h = π. Equality µf ∗ f = π is obtained analogously. In case f2 = f we obtain
condition 3) of the theorem, and in case f2 = π – condition 4).

2. f ∩ ε = θ. Consideration of the case is divided into two subcases.
2.1. µf = f . In this case f2 ∩ ε = ε since null rows are absent in matrix Mf2 else algebra

⟨ f ⟩ contains a subalgebra satisfying condition 7) of the Theorem. Since
⟨
f2

⟩
⊆ ⟨ f ⟩ and f

generates minimal algebra then it holds either
⟨
f2

⟩
= ⟨ f ⟩ or

⟨
f2

⟩
= {π, θ, ε}. The first

case is impossible since according to paragraph 1 would have received
⟨
f2

⟩
= {π, θ, ε, f2} or⟨

f2
⟩
= {π, θ, ε, f2, µf2}, but f ̸= f2 and f ̸= µf2 because of f∩ε = θ and f2∩ε = ε, µf2∩ε = ε.

In the second case we have f2 = π or f2 = ε. The first version corresponds condition 5) of the
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Theorem and the second version — condition 6) where p = 2.
2.2. µf ̸= f . By the properties of algebra operations multioperation g = f ∩ µf has

properties g ∩ ε = θ, g = µg. Since ⟨ g ⟩ ⊆ ⟨ f ⟩ and f generates minimal algebra then it
holds either ⟨ g ⟩ = ⟨ f ⟩ or ⟨ g ⟩ = {π, θ, ε}. In the first case since g ∩ ε = θ, g = µg we have
⟨ g ⟩ = {π, θ, ε, g} = ⟨ f ⟩, it is impossible because of f ̸= g. In the second case since g ∩ ε = θ

then g = θ. Hence f ∩ µf = θ. Thus units in matrix Mf no more
k2 − k

2
.

Multioperation h = f ∗ µf has properties h ∩ ε = ε, h = µh. Since ⟨h ⟩ ⊆ ⟨ f ⟩ and f

generates minimal algebra then it holds either ⟨h ⟩ = ⟨ f ⟩ or ⟨h ⟩ = {π, θ, ε}. The first case is
impossible because of f ̸= h, and in the second case we have f ∗ µf = h = π or f ∗ µf = h = ε.
But f ∗ µf = h = π is also impossible since because of f ∩ ε = θ matrix Mf must have units

more
k2 − k

2
. We have f ∗ µf = ε. Equality µf ∗ f = ε is obtained analogously. From these

equalities it follows that each row and each column of the matrix Mf has one unit, and it means
that multioperation f is a permutation. Degrees of this permutation f, . . . , fp respect to the
operations ∗, µ, ε form a cyclic group which has no proper subgroups for simple p which is a
divisor of k. Also it holds fp = ε and µf = fp−1. Since µf ̸= f then p > 3. This case
corresponds condition 6) of the theorem for p > 3.

3. f ∩ ε = (0, . . . , 0, 2i1
i1
, 0, . . . , 0, 2is

is
, 0, . . . , 0). We consider the cases s = 1 and s > 2.

3.1. f ∩ ε = (0, . . . , 0, 2i
i
, 0, . . . , 0). In this case algebra have minimal subalgebra which

contains three elements (0, . . . , 0, 2i
i
, 0, . . . , 0), (0, . . . , 0, 2k−1

i
, 0, . . . , 0), (2i, . . . , 2i) in addition to

π, θ, ε, and it means that algebra is minimal only if f is equal one of these multioperations. It
corresponds condition 7) of the theorem for one-element set B = {ai}.

3.2. f ∩ ε = (0, . . . , 0, 2i1
i1
, 0, . . . , 0, 2is

is
, 0, . . . , 0). In this case algebra have minimal subalgebra

which contains four elements (2i1+· · ·+2is , . . . , 2i1+· · ·+2is), (0, . . . , 0, 2i1
i1
, 0, . . . , 0, 2is

is
, 0, . . . , 0),

(0, . . . , 0, 2k−1

i1
, 0, . . . , 0, 2k−1

is
, 0, . . . , 0), (0, . . . , 0, 2i1 + · · ·+ 2is

i1
, 0, . . . , 0, 2i1 + · · ·+ 2is

is
, 0, . . . , 0)

in addition to π, θ, ε, and it means that algebra is minimal only if f is equal one of these
multioperations. It corresponds condition 7) of the theorem for set B = {ai1 , . . . , ais}.

These arguments concludes the proof of the theorem. �
Using this theorem one can find all minimal algebras for small ranks. We will do it for rank

k = 2, 3, 4. Also we will indicate type of multioperation which generating a minimal algebra of
unary multioperations according to the number of properties in the theorem.

Minimal algebras of unary Minimal algebras of unary
multioperations of rank 2 (total 4) multioperations of rank 3 (total 18)
Type 1: does not exist Type 1: (1,6,6), (5,2,5), (3,3,4)
Type 2: does not exist Type 2: (7,3,5), (3,7,6), (5,6,7)
Type 3: (1,3) Type 3: (1,3,7), (7,2,6), (5,7,4)
Type 4: does not exist Type 4: (3,6,5)
Type 5: does not exist Type 5: (6,5,3)
Type 6: (2,1) Type 6: (2,4,1)
Type 7: (1,1), (2,2) Type 7: (1,1,1), (2,2,2), (4,4,4), (3,3,3),

(5,5,5), (6,6,6)

Minimal algebras of unary multioperations of rank 4 (total 86)
Type 1: (1,14,14,14), (13,2,13,13), (11,11,4,11), (7,7,7,8), (1,2,12,12), (1,10,4,10), (1,6,6,8),

(9,2,4,9), (5,2,5,8), (3,3,4,8), (3,3,12,12), (5,10,5,10), (9,6,6,9).
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Type 2: (11,7,14,13), (13,14,7,11), (7,11,13,14), (15,3,5,9), (15,7,7,9), (15,3,13,13), (15,11,5,11),
(3,15,6,10), (3,15,14,14), (11,15,6,11), (7,15,7,10), (5,6,15,12), (5,14,15,14), (6,6,15,13),
(7,7,15,12),(9,10,12,15), (9,14,14,15), (13,10,13,15), (11,11,12,15), (15,15,7,11),
(15,7,15,13), (15,11,13,15), (7,15,15,14), (11,15,14,15), (13,14,15,15).

Type 3: (1,3,7,15), (3,2,7,15), (5,7,4,15), (1,7,5,15), (7,2,6,15), (7,6,4,15), (1,3,5,15), (1,7, 7,15),
(7,2,7,15), (3,2,6,15), (7,7,4,15), (5,6,4,15), (15,2,6,10), (15,2,6,14), (15,2,14,10),
(15,2,14,14), (15,6,4,12), (15,6,4,14), (15,14,4,12), (15,14,4,14), (5,15,4,12),
(5,15,4,13), (13,15,4,12), (13,15,4,13).

Type 4: does not exist.
Type 5: (11,13,11,7), (6,13,11,6), (10,13,10,7), (12,12,11,7), (14,13,3,3), (14,5,11,5), (14,9,9,7).
Type 6: (2,1,8,4), (4,8,1,2), (8,4,2,1).
Type 7: (1,1,1,1), (2,2,2,2), (4,4,4,4), (8,8,8,8), (3,3,3,3), (5,5,5,5), (6,6,6,6), (7,7,7,7), (9,9,9,9),

(10,10,10,10), (11,11,11,11), (12,12,12,12), (13,13,13,13), (14,14,14,14).
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Россия

Получено матричное представление алгебр унарных мультиопераций конечного ранга и список
тождеств, выполняемых в таких алгебрах. Эти результаты используются для доказательства
основного результата: описания минимальных алгебр унарных мультиопераций конечного ранга.
Как следствие, получен список всех таких минимальных алгебр для небольших рангов.

Ключевые слова: мультиоперация, алгебра, минимальная алгебра, матрица, операция, подста-
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