удк 519.7 Minimal Algebras of Unary Multioperations

Nikolay A. Peryazev^{*}

Saint Petersburg Electrotechnical University Professor Popov, 5, Saint Peterburg, 197376

Russia

Yulia V. Peryazeva[†]

Gymnasium 24 of Saint Petersburg Srednii Avenue, 20, Saint Peterburg, 199053

Russia

Ivan K. Sharankhaev[‡]

Institute of Mathematics and Computer Science Buryat State University Smolin, 24a, Ulan-Ude, 670000 Bussia

Russia

Received 10.01.2016, received in revised form 17.02.2016, accepted 24.03.2016

A matrix impression of algebras of unary multioperations of a finite rank and the list of the identities which are carried out in such algebras are gained. These results are used for the proof of the main result: descriptions of the minimal algebras of unary multioperations of a finite rank. As a result the list of all such minimal algebras for small ranks is received.

Keywords: multioperation, algebra, minimal algebra, matrix, operation, substitution. DOI: 10.17516/1997-1397-2016-9-2-220-224.

Introduction

Algebras of unary multioperations which are considered in this paper are finite algebras. Description of minimal algebras is important to study the structure of these algebras [1]. A description of all algebras of unary multioperations of rank 3 was obtained in [2]. The main result of this paper was announced in [3]. We note that algebras of unary multioperations are used for the study of the superclones and hence the clones [4].

Let B(A) be the set of all subsets of A. A mapping from A into B(A) is called *unary* multioperation on A. The set of all unary multioperations on A will be denoted by M_A^1 .

Multioperation f on finite set $A = \{a_0, \ldots, a_{k-1}\}$ can be represented as mapping

 $f: \{2^0, 2^1, \dots, 2^{k-1}\} \to \{0, 1, \dots, 2^k - 1\},\$

which is obtained from f by coding $a_i \to 2^i$; $\emptyset \to 0$; $\{a_{i_1}, \ldots, a_{i_s}\} \to 2^{i_1} + \cdots + 2^{i_s}$.

And multioperation f is represented by vector $(\alpha_0, \ldots, \alpha_{k-1})$, where $f(a_i) = \alpha_i$, using the coding.

^{*}nikolai.baikal@gmail.com

[†]peryazeva@list.ru

[‡]goran5@mail.ru

[©] Siberian Federal University. All rights reserved

Let $S \subseteq M_A^1$. Algebra $F = \langle S; *, \cap, \mu, \varepsilon, \theta, \pi \rangle$ with operations of substitution (f * g), intersection $(f \cap g)$, reversibility (μf) and nullary operations ε, θ, π is called *algebra of unary multioperations* on A:

 $\begin{array}{l} (f\ast g)(a)=\{b| \text{ there exists } c\in g(a) \text{ such that } b\in f(c)\};\\ (f\cap g)(a)=f(a)\cap g(a);\\ (\mu f)(a)=\{b|a\in f(b)\};\\ \varepsilon(a)=\{a\};\\ \theta(a)=\varnothing;\\ \pi(a)=A. \end{array}$

The power of set A is called *rank* of algebra. Further we believe that rank is finite and equal $k \ge 2$.

We note some simple properties of operations of algebra of unary multioperations:

 $\begin{aligned} f*(g*h) &= (f*g)*h, \ f\cap (g\cap h) = (f\cap g)\cap h, \ f\cap g = g\cap f, \ \mu(\mu f) = f, \ \mu(f\cap g) = \mu f\cap \mu g, \\ \mu(f*g) &= \mu g*\mu f, \ f*\varepsilon = \varepsilon*f = f, \ \theta*f = f*\theta = \theta, \ f\cap \pi = f, \ f\cap \theta = \theta, \ \mu\varepsilon = \varepsilon, \ \mu\theta = \theta, \ \mu\pi = \pi. \end{aligned} \\ \text{There is the following matrix representation of algebras of unary multioperations.} \end{aligned}$

Let $B = \{0, 1\}; *, + >$ be two-element Boolean algebra. Boolean matrices are binary matrices on the elements which define the Boolean operations.

For unary multioperation f on A we define Boolean square matrix $M_f = (\alpha_{ij})$ of order k as follows: $\alpha_{ij} = 1$ if $a_i \in f(a_j)$ else $\alpha_{ij} = 0$.

Operations of algebra of unary of multioperations are represented by matrix operations in the following way:

 $M_{f*g} = M_f * M_g$ is matrix multiplication;

 $M_{f\cap g} = M_f \circ M_g$ is element-wise matrix multiplication;

 $M_{\mu f} = M_f^T$ is transposition of matrix;

 $M_{\varepsilon} = E$ is diagonal matrix;

 $M_{\theta} = O$ is null matrix;

 $M_{\pi} = P$ is unit matrix.

For example, unary multioperation in vector form f = (3, 7, 1) is represented by matrix

$$M_f = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

The main result

The smallest algebra which not equal trivial algebra consisting of only multioperations π, θ, ε is called *minimal algebra* of unary multioperations. It is obvious that necessary and sufficient condition for minimality of algebra of unary multioperations is the generating of any its multioperation which not equal π, θ, ε . The following theorem describes the multioperations generating minimal algebras of unary multioperations.

Theorem 1. Multioperation f on A which not equal π, θ, ε generates minimal algebra of unary multioperations of rank k if and only if it satisfies one of the following conditions:

1) $f \cap \varepsilon = \varepsilon$, $\mu f = f$, $f^2 = f$; 2) $f \cap \varepsilon = \varepsilon$, $\mu f = f$, $f^2 = \pi$; 3) $f \cap \varepsilon = \mu f \cap f = \varepsilon$, $f * \mu f = \mu f \cap f = \pi$, $f^2 = f$; 4) $f \cap \varepsilon = \mu f \cap f = \varepsilon$, $f * \mu f = \mu f \cap f = \pi$, $f^2 = \pi$; 5) $f \cap \varepsilon = \theta$, $\mu f = f$, $f^2 = \pi$;

6) $f \cap \varepsilon = \theta$, $\mu f = f^{p-1}$, $f^p = \varepsilon$, where p is simple divisor of k;

7) There exists not empty set $B \subsetneq A$ such that

either f(a) = B for all $a \in A$.

or $f(b) = \{b\}$ for all $b \in B$ and $f(a) = \emptyset$ for all $a \in A \setminus B$,

or f(b) = A for all $b \in B$ and $f(a) = \emptyset$ for all $a \in A \setminus B$,

or f(b) = B for all $b \in B$ and $f(a) = \emptyset$ for all $a \in A \setminus B$.

Proof. The fact that the algebras generated by the multioperations f with these properties will be minimal follows from the fact that

if conditions 1), 2), 5) are fulfilled then algebras consists of four elements $\pi, \theta, \varepsilon, f$;

if conditions 3), 4) are fulfilled then consists of five elements $\pi, \theta, \varepsilon, f, \mu f$;

if condition 6) is fulfilled then consists of p+2 elements $\pi, \theta, \varepsilon, f, f^2, \ldots, f^{p-1}$;

if condition 7) is fulfilled in case of one-element set A then consists of six elements $\pi, \theta, \varepsilon, (0, \dots, 0, 2^i_i, 0, \dots, 0), (0, \dots, 0, 2^{k-1}_i, 0, \dots, 0), (2^i, \dots, 2^i),$

else consists of seven elements $\pi, \theta, \varepsilon, (2^{i_1} + \dots + 2^{i_s}, \dots, 2^{i_1} + \dots + 2^{i_s}), (0, \dots, 0, 2^{i_1}, 0, \dots, 0, 2^{i_s}, 0, \dots, 0),$ $(0, \dots, 0, 2^{k-1}_{i_1}, 0, \dots, 0, 2^{k-1}_{i_s}, 0, \dots, 0), (0, \dots, 0, 2^{i_1} + \dots + 2^{i_s}, 0, \dots, 0, 2^{i_1} + \dots + 2^{i_s}, 0, \dots, 0)$ $(0, \dots, 0, 2^{k-1}_{i_1}, 0, \dots, 0, 2^{k-1}_{i_s}, 0, \dots, 0), (0, \dots, 0, 2^{i_1} + \dots + 2^{i_s}, 0, \dots, 0, 2^{i_1} + \dots + 2^{i_s}, 0, \dots, 0)$ (here we specify that for the last three components of the non-zero elements are in positions i_1,\ldots,i_s). In addition each multioperation other than π,θ,ε generates all elements of its algebra.

We now show that any f generating a minimal algebra of unary multioperations will satisfy one of the seven conditions of the theorem.

We consider the possible cases:

1. $f \cap \varepsilon = \varepsilon$. It is clear that $\langle f^2 \rangle \subseteq \langle f \rangle$ and since f generates minimal algebra then it holds either $\langle f^2 \rangle = \langle f \rangle$ or $\langle f^2 \rangle = \{\pi, \theta, \varepsilon\}$. Since $f \cap \varepsilon = \varepsilon$ then units of matrix M_f stored in matrix M_{f^2} . Hence in first case $f^2 = f$, since else $f \notin \langle f^2 \rangle$, and in second case it is obvious that $f^2 = \pi$.

1.1. If $\mu f = f$ then first case corresponds condition 1) of the theorem, and second case – condition 2).

1.2. Let $\mu f \neq f$. By the properties of algebra operations multioperation $g = f \cap \mu f$ has properties $q \cap \varepsilon = \varepsilon$, $q = \mu q$. It is clear that $\langle q \rangle \subseteq \langle f \rangle$ and since f generates minimal algebra then it holds either $\langle g \rangle = \langle f \rangle$ or $\langle g \rangle = \{\pi, \theta, \varepsilon\}$. By $g \cap \varepsilon = \varepsilon$, $g = \mu g$ in first case we obtain $\langle g \rangle = \{\pi, \theta, \varepsilon, g\} = \langle f \rangle$ that is impossible in view of $f \neq g$. From the second case implies $f \cap \mu f = g = \varepsilon$. Similarly we obtain that multioperation $h = f * \mu f$ has properties $h \cap \varepsilon = \varepsilon$, $h = \mu h$. Since $\langle h \rangle \subseteq \langle f \rangle$ and f generates minimal algebra then it holds either $\langle h \rangle = \langle f \rangle$ or $\langle h \rangle = \{\pi, \theta, \varepsilon\}$. As above, the first case is impossible, and in the second case we have $f * \mu f = h = \pi$. Equality $\mu f * f = \pi$ is obtained analogously. In case $f^2 = f$ we obtain condition 3) of the theorem, and in case $f^2 = \pi$ – condition 4).

2. $f \cap \varepsilon = \theta$. Consideration of the case is divided into two subcases.

2.1. $\mu f = f$. In this case $f^2 \cap \varepsilon = \varepsilon$ since null rows are absent in matrix M_{f^2} else algebra $\langle f \rangle$ contains a subalgebra satisfying condition 7) of the Theorem. Since $\langle f^2 \rangle \subseteq \langle f \rangle$ and f generates minimal algebra then it holds either $\langle f^2 \rangle = \langle f \rangle$ or $\langle f^2 \rangle = \{\pi, \theta, \varepsilon\}$. The first case is impossible since according to paragraph 1 would have received $\langle f^2 \rangle = \{\pi, \theta, \varepsilon, f^2\}$ or $\langle f^2 \rangle = \{\pi, \theta, \varepsilon, f^2, \mu f^2\}, \text{ but } f \neq f^2 \text{ and } f \neq \mu f^2 \text{ because of } f \cap \varepsilon = \theta \text{ and } f^2 \cap \varepsilon = \varepsilon, \mu f^2 \cap \varepsilon = \varepsilon.$ In the second case we have $f^2 = \pi$ or $f^2 = \varepsilon$. The first version corresponds condition 5) of the Theorem and the second version - condition 6) where p = 2.

2.2. $\mu f \neq f$. By the properties of algebra operations multioperation $g = f \cap \mu f$ has properties $g \cap \varepsilon = \theta$, $g = \mu g$. Since $\langle g \rangle \subseteq \langle f \rangle$ and f generates minimal algebra then it holds either $\langle g \rangle = \langle f \rangle$ or $\langle g \rangle = \{\pi, \theta, \varepsilon\}$. In the first case since $g \cap \varepsilon = \theta$, $g = \mu g$ we have $\langle g \rangle = \{\pi, \theta, \varepsilon, g\} = \langle f \rangle$, it is impossible because of $f \neq g$. In the second case since $g \cap \varepsilon = \theta$ then $g = \theta$. Hence $f \cap \mu f = \theta$. Thus units in matrix M_f no more $\frac{k^2 - k}{2}$. Multioperation $h = f * \mu f$ has properties $h \cap \varepsilon = \varepsilon$, $h = \mu h$. Since $\langle h \rangle \subseteq \langle f \rangle$ and f

generates minimal algebra then it holds either $\langle h \rangle = \langle f \rangle$ or $\langle h \rangle = \{\pi, \theta, \varepsilon\}$. The first case is impossible because of $f \neq h$, and in the second case we have $f * \mu f = h = \pi$ or $f * \mu f = h = \varepsilon$. But $f * \mu f = h = \pi$ is also impossible since because of $f \cap \varepsilon = \theta$ matrix M_f must have units more $\frac{k^2 - k}{2}$. We have $f * \mu f = \varepsilon$. Equality $\mu f * f = \varepsilon$ is obtained analogously. From these equalities it follows that each row and each column of the matrix M_f has one unit, and it means that multioperation f is a permutation. Degrees of this permutation f, \ldots, f^p respect to the operations $*, \mu, \varepsilon$ form a cyclic group which has no proper subgroups for simple p which is a divisor of k. Also it holds $f^p = \varepsilon$ and $\mu f = f^{p-1}$. Since $\mu f \neq f$ then $p \ge 3$. This case corresponds condition 6) of the theorem for $p \ge 3$.

3. $f \cap \varepsilon = (0, \dots, 0, 2_{i_1}^{i_1}, 0, \dots, 0, 2_{i_s}^{i_s}, 0, \dots, 0)$. We consider the cases s = 1 and $s \ge 2$. 3.1. $f \cap \varepsilon = (0, \dots, 0, 2_i^i, 0, \dots, 0)$. In this case algebra have minimal subalgebra which contains three elements $(0, \dots, 0, 2_i^i, 0, \dots, 0), (0, \dots, 0, 2_i^{k-1}, 0, \dots, 0), (2^i, \dots, 2^i)$ in addition to π, θ, ε , and it means that algebra is minimal only if f is equal one of these multioperations. It corresponds condition 7) of the theorem for one-element set $B = \{a_i\}$.

3.2. $f \cap \varepsilon = (0, \dots, 0, 2_{i_1}^{i_1}, 0, \dots, 0, 2_{i_s}^{i_s}, 0, \dots, 0)$. In this case algebra have minimal subalgebra which contains four elements $(2^{i_1} + \dots + 2^{i_s}, \dots, 2^{i_1} + \dots + 2^{i_s}), (0, \dots, 0, 2_{i_1}^{i_1}, 0, \dots, 0, 2_{i_s}^{i_s}, 0, \dots, 0), (0, \dots, 0, 2^{i_1} + \dots + 2^{i_s}, 0, \dots, 0)$ in addition to π, θ, ε , and it means that algebra is minimal only if f is equal one of these multioperations. It corresponds condition 7) of the theorem for set $B = \{a_{i_1}, \ldots, a_{i_s}\}$. \square

These arguments concludes the proof of the theorem.

Using this theorem one can find all minimal algebras for small ranks. We will do it for rank k = 2, 3, 4. Also we will indicate type of multioperation which generating a minimal algebra of unary multioperations according to the number of properties in the theorem.

Minimal algebras of unary	Minimal algebras of unary
multioperations of rank 2 $(total 4)$	multioperations of rank 3 (total 18)
Type 1: does not exist	Type 1: $(1,6,6), (5,2,5), (3,3,4)$
Type 2: does not exist	Type 2: $(7,3,5)$, $(3,7,6)$, $(5,6,7)$
Type 3: (1,3)	Type 3: $(1,3,7), (7,2,6), (5,7,4)$
Type 4: does not exist	Type 4: (3,6,5)
Type 5: does not exist	Type 5: (6,5,3)
Type 6: (2,1)	Type 6: (2,4,1)
Type 7: (1,1), (2,2)	Type 7: $(1,1,1)$, $(2,2,2)$, $(4,4,4)$, $(3,3,3)$,
	(5,5,5), (6,6,6)

Minimal algebras of unary multioperations of rank 4 (total 86)

Type 1: (1,14,14,14), (13,2,13,13), (11,11,4,11), (7,7,7,8), (1,2,12,12), (1,10,4,10), (1,6,6,8). (9,2,4,9), (5,2,5,8), (3,3,4,8), (3,3,12,12), (5,10,5,10), (9,6,6,9).

Nikolay A. Peryazev, Yulia V. Peryazeva, Ivan K. Sharankhaev Minimal Algebras of Unary Multioperations

- $$\begin{split} \text{Type 2:} & (11,7,14,13), (13,14,7,11), (7,11,13,14), (15,3,5,9), (15,7,7,9), (15,3,13,13), (15,11,5,11), \\ & (3,15,6,10), (3,15,14,14), (11,15,6,11), (7,15,7,10), (5,6,15,12), (5,14,15,14), (6,6,15,13), \\ & (7,7,15,12), (9,10,12,15), (9,14,14,15), (13,10,13,15), (11,11,12,15), (15,15,7,11), \\ & (15,7,15,13), (15,11,13,15), (7,15,15,14), (11,15,14,15), (13,14,15,15). \end{split}$$
- $\begin{array}{l} \text{Type 3:} & (1,3,7,15), \, (3,2,7,15), \, (5,7,4,15), \, (1,7,5,15), \, (7,2,6,15), \, (7,6,4,15), \, (1,3,5,15), \, (1,7,\,7,15), \\ & (7,2,7,15), \, (3,2,6,15), \, (7,7,4,15), \, (5,6,4,15), \, (15,2,6,10), \, (15,2,6,14), \, (15,2,14,10), \\ & (15,2,14,14), \, (15,6,4,12), \, (15,6,4,14), \, (15,14,4,12), \, (15,14,4,14), \, (5,15,4,12), \\ & (5,15,4,13), \, (13,15,4,12), \, (13,15,4,13). \end{array}$
- Type 4: does not exist.
- Type 5: (11,13,11,7), (6,13,11,6), (10,13,10,7), (12,12,11,7), (14,13,3,3), (14,5,11,5), (14,9,9,7).
- Type 6: (2,1,8,4), (4,8,1,2), (8,4,2,1).
- $\begin{array}{l} \text{Type 7: } (1,1,1,1), (2,2,2,2), (4,4,4,4), (8,8,8,8), (3,3,3,3), (5,5,5,5), (6,6,6,6), (7,7,7,7), (9,9,9,9), \\ (10,10,10,10), (11,11,11,11), (12,12,12,12), (13,13,13,13), (14,14,14,14). \end{array}$

References

- D.Hobby, R.McKenzie, The structure of finite algebras, Contemporary Mathematics, 76(1988).
- [2] A.S.Kazimirov, N.A.Peryazev, Algebras of unary multioperations, International Conference Maltsev meeting, Novosibirsk, 2013, 156 (in Russian).
- [3] N.A.Peryazev, Minimal algebras of unary multioperations, International Conference Maltsev meeting, Novosibirsk, 2015, 193 (in Russian).
- [4] N.A.Peryazev, I.K.Sharankhaev, Galois theory for clones and superclones, *Diskretnaya matematika*, 27(2015), no. 4, 79–93 (in Russian).

Минимальные алгебры унарных мультиопераций

Николай А. Перязев

Санкт-Петербургский государственный электротехнический университет Проф. Попова, 5, Санкт-Петербург, 197376

Россия

Юлия В. Перязева

ГОУ гимназия 24 Средний пр., 20, Санкт-Петербург, 199053

Россия

Иван К. Шаранхаев

Институт математики и информатики Бурятский государственный университет Смолин, 24a, Улан-Удэ, 670000

Россия

Получено матричное представление алгебр унарных мультиопераций конечного ранга и список тождеств, выполняемых в таких алгебрах. Эти результаты используются для доказательства основного результата: описания минимальных алгебр унарных мультиопераций конечного ранга. Как следствие, получен список всех таких минимальных алгебр для небольших рангов.

Ключевые слова: мультиоперация, алгебра, минимальная алгебра, матрица, операция, подстановка.