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A matriz impression of algebras of unary multioperations of a finite rank and the list of the identities
which are carried out in such algebras are gained. These results are used for the proof of the main result:
descriptions of the minimal algebras of unary multioperations of a finite rank. As a result the list of all

such minimal algebras for small ranks is received.
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Introduction

Algebras of unary multioperations which are considered in this paper are finite algebras.
Description of minimal algebras is important to study the structure of these algebras [1]. A de-
scription of all algebras of unary multioperations of rank 3 was obtained in [2]. The main result
of this paper was announced in [3]. We note that algebras of unary multioperations are used for
the study of the superclones and hence the clones [4].

Let B(A) be the set of all subsets of A. A mapping from A into B(A) is called unary
multioperation on A. The set of all unary multioperations on A will be denoted by M3}.

Multioperation f on finite set A = {ag,...,ar—1} can be represented as mapping

{202t 2k {0,1,...,2% — 1},

which is obtained from f by coding a; — 24 @ — 0;{a;,,...,a;, } — 20 + -+ + 2.
And multioperation f is represented by vector («p,...,ar—1), where f(a;) = «y, using the
coding.
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Let S C M}. Algebra F =< S;*,M,pu,e,0,7 > with operations of substitution (f * g),
intersection (f N g), reversibility (uf) and nullary operations ¢,0, 7 is called algebra of unary
multioperations on A:

(f % g)(a) = {b| there exists ¢ € g(a) such that b€ f(c)};

(fNg)a) = f(a) Ng(a);

(uf)(a) = {bla € f(b)};

The power of set A is called rank of algebra. Further we believe that rank is finite and equal
k>2.

We note some simple properties of operations of algebra of unary multioperations:
fx(gxh)=(f*xg)*xh, fO(gNh)=(fNg)Nh, fng=gnf, plpf)=rf, p(fNg)=pnf0ug,
w(fxg)=pg*xpf, fre=exf=f, O0xf=f*x0=0, fnr=f, fNO=0, pe=e, uf=0, ur=m.

There is the following matrix representation of algebras of unary multioperations.

Let B =< {0,1};%,+ > be two-element Boolean algebra. Boolean matrices are binary
matrices on the elements which define the Boolean operations.

For unary multioperation f on A we define Boolean square matrix My = (o;;) of order k as
follows: a;; =1if a; € f(a; ) else a;; = 0.

Operations of algebra of unary of multioperations are represented by matrix operations in
the following way:

My.g = My * Mgy is matrix multiplication;

Myng = My o M, is element-wise matrix multiplication;

M,y = MfT is transposition of matrix;

M, = E is diagonal matrix;

My = O is null matrix;

M, = P is unit matrix.

For example, unary multioperation in vector form f = (3,7,1) is represented by matrix

111
My=|11 0
010

The main result

The smallest algebra which not equal trivial algebra consisting of only multioperations 7,6, e
is called minimal algebra of unary multioperations. It is obvious that necessary and sufficient
condition for minimality of algebra of unary multioperations is the generating of any its multiop-
eration which not equal 7,60, e. The following theorem describes the multioperations generating
minimal algebras of unary multioperations.

Theorem 1. Multioperation f on A which not equal 7, 0,& generates minimal algebra of unary
multioperations of rank k if and only if it satisfies one of the following conditions:

1) fne=e, uf=f fP=f;

Q)fﬂszs, Mf:f’ f2:7T,'

3) fne=pfnf=e fruf=pfnf=m f>=f

4)fne=pfnf=e fruf=pf0f=mn f=m;
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5) fre=0, uf = f, f2=n;

6) fne=0, uf = fP~L, fP =&, where p is simple divisor of k;
7) There exists not empty set B C A such that

either f(a) = B for alla € A,

or f(b) = {b} for allb € B and f(a) =@ for alla € A\ B,

or f(b) = A for allb € B and f(a) = @ for alla € A\ B,

or f(b) =B for allb € B and f(a) =& for alla € A\ B.

Proof. The fact that the algebras generated by the multioperations f with these properties
will be minimal follows from the fact that
if conditions 1), 2), 5) are fulfilled then algebras consists of four elements w0, ¢, f;
if conditions 3), 4) are fulfilled then consists of five elements  m,6,¢, f, uf;
if condition 6) is fulfilled then consists of p + 2 elements m,0,¢, f, f2,..., fP~ 4
if condition 7) is fulfilled in case of one-element set A then consists of six elements
7,0,¢,(0,...,0,2°,0,...,0),(0,...,0,2*71.0,...,0),(2,...,2%),
else consists of sevenl elements '
7,08, (28 4 - 42020 4. 4 265) (0,...,0, 211,0,...,0, 2%,0,...,0),
11 s
(0,...,0, 28710,...,0, 2*71)0,...,0), (0,...,0, 2 + - +2%,0,...,0, 211 4 -+ 4+ 2% 0,...,0)
71 s

11 1s
(here we specify that for the last three components of the non-zero elements are in positions

i1,...,15). In addition each multioperation other than 7,0, generates all elements of its
algebra.

We now show that any f generating a minimal algebra of unary multioperations will satisfy
one of the seven conditions of the theorem.

We consider the possible cases:

1. fne=¢e. It is clear that <f2> C (f) and since f generates minimal algebra then it
holds either ( f2) = (f) or (f2) = {m,0,e}. Since f Ne = ¢ then units of matrix M, stored
in matrix My=. Hence in first case f2 = f, since else f ¢ ( f?), and in second case it is obvious
that f2 = 7.

1.1. If puf = f then first case corresponds condition 1) of the theorem, and second case —
condition 2).

1.2. Let uf # f. By the properties of algebra operations multioperation g = f N uf has
properties gNe =€, g = pug. It is clear that (g) C (f) and since f generates minimal algebra
then it holds either (g) = (f) or (g) = {m,0,e}. By gNe = ¢, g = pg in first case we
obtain (g) = {m,0,e,9} = (f) that is impossible in view of f # g. From the second case
implies f N puf = g = e. Similarly we obtain that multioperation h = f % uf has properties
hNe =¢, h = ph. Since (h) C (f) and f generates minimal algebra then it holds either
(h)y={(f)or (h)={m0,ec}. As above, the first case is impossible, and in the second case we
have f * uf = h = m. Equality uf * f = 7 is obtained analogously. In case f2 = f we obtain
condition 3) of the theorem, and in case f? = 7 — condition 4).

2. fNe=0. Consideration of the case is divided into two subcases.

2.1. uf = f. In this case f2 Ne = ¢ since null rows are absent in matrix My else algebra
(f) contains a subalgebra satisfying condition 7) of the Theorem. Since ( f2) C (f) and f
generates minimal algebra then it holds either ( f?) = (f) or (f?) = {m,0,e}. The first
case is impossible since according to paragraph 1 would have received < f2> = {m,0,¢, f*} or
(f*)={m0,e, f2, nf?}, but f # f? and f # pf? because of fNe = 0 and f>Ne = ¢, pf?Ne = e.
In the second case we have f2 = m or f? = e. The first version corresponds condition 5) of the
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Theorem and the second version — condition 6) where p = 2.

2.2. uf # f. By the properties of algebra operations multioperation ¢ = f N uf has
properties g Ne = 6, g = pg. Since (g) C (f) and f generates minimal algebra then it
holds either (g) = (f) or (g) = {m,60,¢c}. In the first case since gNe = 0, g = pug we have

(g) ={m 0,e,9} = (), it is impossible because of f # g. In the second case since g Ne =0
k2 —k

then g = 6. Hence f N puf = 6. Thus units in matrix M; no more

Multioperation h = f % pf has properties hNe = ¢, h = ph. Since (h) C (f) and f
generates minimal algebra then it holds either (h) = (f) or (h) = {n,0,e}. The first case is
impossible because of f # h, and in the second case we have fxuf =h=mor fxuf =h=c¢.

But f* pf = h = m is also impossible since because of f Ne = 6 matrix M; must have units
2

more . We have f x uf = . Equality puf * f = € is obtained analogously. From these
equalities it follows that each row and each column of the matrix My has one unit, and it means
that multioperation f is a permutation. Degrees of this permutation f,..., fP respect to the
operations *, i, form a cyclic group which has no proper subgroups for simple p which is a
divisor of k. Also it holds fP = ¢ and puf = fP~!. Since uf # f then p > 3. This case
corresponds condition 6) of the theorem for p > 3

3. fne= (O,...,O,Qiil,O,...,O,%iS,O,...,0). We consider the cases s =1 and s > 2.

1 s

3.1. fne=(0,.. .,0,2;,0, ...,0). In this case algebra have minimal subalgebra which
contains three elements (0,...,0,2%0,...,0),(0,...,0,2*=10,...,0),(2%,...,2') in addition to
m,0,e, and it means that algebra izs minimal only if f is Zequaul one of these multioperations. It
corresponds condition 7) of the theorem for one-element set B = {a;}.

3.2. fne=(0,...,0, 22_“,0, ..., 0, %’ ,0,...,0). In this case algebra have minimal subalgebra

1 s

which contains four elements (2%t 4 - -+42% ... 28 4...42%) (0,...,0, 21‘1 ,0,...,0,2%.0,...,0),
(0,. 02k10 02“0 5 0), (0,...,0,28 4 ... 2% 0,. 02“+ +265.0,...,0)

in addltlon to m,0,¢, and it means that algebra is mlmmal only if f is equal one of these
multioperations. It corresponds condition 7) of the theorem for set B = {a;,,...,a;,}.
These arguments concludes the proof of the theorem. O

Using this theorem one can find all minimal algebras for small ranks. We will do it for rank
k= 2,3,4. Also we will indicate type of multioperation which generating a minimal algebra of
unary multioperations according to the number of properties in the theorem.

Minimal algebras of unary Minimal algebras of unary
multioperations of rank 2 (total 4) multioperations of rank 3 (total 18)
Type 1: does not exist Type 1: (1,6,6), (5,2,5), (3,3,4)

Type 2: does not exist Type 2: (7,3,5), (3,7,6), (5,6,7)

Type 3: (1,3) Type 3: (1,3,7), (7,2,6), (5,7,4)

Type 4: does not exist Type 4: (3,6,5)

Type 5: does not exist Type 5: (6,5,3)

Type 6: (2,1) Type 6: (2,4,1)

Type 7: (1,1), (2,2) Type 7: (1,1,1), (2,2,2), (4,4,4), (3,3.3),

(5,5,5), (6,6,6)

Minimal algebras of unary multioperations of rank 4 (total 86)
Type 1: (1,14,14,14), (13,2,13,13), (11,11,4,11), (7,7,7,8), (1,2,12,12), (1,10,4,10), (1,6,6,8),
(9,2,4,9), (5,2,5,8), (3,3,4,8), (3,3,12,12), (5,10,5,10), (9,6,6,9).
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Type 2: (11,7,14,13), (13,14,7,11), (7,11,13,14), (15,3,5,9), (15,7,7,9), (15,3,13,13), (15,11,5,11),
(3,15,6,10), (3,15,14,14), (11,15,6,11), (7,15,7,10), (5,6,15,12), (5,14,15,14), (6,6,15,13),
(7,7,15,12),(9,10,12,15), (9,14,14,15), (13,10,13,15), (11,11,12,15), (15,15,7,11),
(15,7,15,13), (15,11,13,15), (7,15,15,14), (11,15,14,15), (13,14,15,15).

Type 3: (1,3,7,15), (3,2,7,15), (5,7,4,15), (1,7,5,15), (7,2,6,15), (7,6,4,15), (1,3,5,15), (1,7, 7,15),
(7,2,7,15), (3,2,6,15), (7,7,4,15), (5,6,4,15), (15,2,6,10), (15,2,6,14), (15,2,14,10),
(15,2,14,14), (15,6,4,12), (15,6,4,14), (15,14,4,12), (15,14,4,14), (5,15,4,12),

(5,15,4,13), (13,15,4,12), (13,15,4,13).

Type 4: does not exist.

Type 5: (11,13,11,7), (6,13,11,6), (10,13,10,7), (12,12,11,7), (14,13,3,3), (14,5,11,5), (14,9,9,7).

Type 6: (2,1,8,4), (4,8,1,2), (8,4,2,1).

Type 7: (1,1,1,1), (2,2,2,2), (4,4,4,4), (8,8,8,8), (3,3,3,3), (5,5,5,5), (6,6,6,6), (7,7,7,7), (9,9,9,9),
(10,10,10,10), (11,11,11,11), (12,12,12,12), (13,13,13,13), (14,14,14,14).

References

[1] D.Hobby, R.McKenzie, The structure of finite algebras, Contemporary Mathematics,
76(1988).

[2] A.S.Kazimirov, N.A.Peryazev, Algebras of unary multioperations, International Conference
Maltsev meeting, Novosibirsk, 2013, 156 (in Russian).

[3] N.A.Peryazev, Minimal algebras of unary multioperations, International Conference Malt-
sev meeting, Novosibirsk, 2015, 193 (in Russian).

[4] N.A.Peryazev, I.K.Sharankhaev, Galois theory for clones and superclones, Diskretnaya
matematika, 27(2015), no. 4, 79-93 (in Russian).

MunuMaabHbIe aJredpbl YHAPHBIX MYJTbTUOIIEPAITIii
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Poccus

Hoayuerno mampuuroe npedcmasienue an2edp YHAPHHLLT MYALMUONEPAUUT KOHEUHO20 PAH2A U CRUCOK
Mootclecms, 6biNONHAEMBIT 8 MAKUT GA2eOPAT. DMU DPEZYALMAMBL UCTLOALYIOMCA OAA 0KA3AMEALCTNEA
0CHOBHO020 PE3YADMAMA: ONUCAHUA MUHUMAALHHIL AA2E0D YHAPHBIT MYALTMUONEPAUUT KOHEUHO020 PAH2A.
Kax caedcmeue, noayien cnucox 6CET MaKuxr MUHUMAALHOIT aA2e0D OAfL HEOOALUWULT DPAH206.

Karouesvie ca06a: Mysvbmuonepayus, arzebpa, MUHUMAALHASA aA2€6Da, MAMPUUE, ONEPAUUS, NOOCTNA-
HOBKQ.
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