• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 37, Pages: 2860-2864

Original Article

Quantitative Analysis of Caffeine in the Green Tea, Black Tea and Soft Drink Using UV-Visible Spectrophotometer

Received Date:23 December 2020, Accepted Date:11 October 2021, Published Date:03 November 2021

Abstract

Objective -To determine the content of caffeine in the beverages like green tea, black tea, and soft drink which are commercially available in the local market of Hapur with the help of a UV Visible spectrophotometer. Method- To find out the content of caffeine, six different brands of green tea, black tea, and soft drink were purchased from the local market in Hapur. The caffeine was extracted from them using chloroform as an extractant and assessed qualitatively and quantitatively with the help of a UV Visible spectrophotometer. The maximum absorbance of caffeine in chloroform occurs at 273 nm. The standard solutions of caffeine from the range 2-30 ppm were prepared in the chloroform, show the linearity with the correlation coefficient of 0.99. From the calibration curve, the concentration of caffeine was determined in various brands. It is observed that black tea contains the maximum caffeine content followed by green tea and soft drinks. Findings- In this study the maximum caffeine content find out was (45.6 mg/g) in the Nice black tea sample and the minimum (0.161 mg/ml) in Pepsi soft drink sample. Novelty-The caffeine content reported here is higher than that of previous studies may be due to the modified approach [treatment temperature (90-1000C) and longer brewing time (05 minutes) in this study. The use of the UV-Visible spectrophotometer is also an alternative to the HPLC technique, thereby the working cost could be brought down.

Keywords: Caffeine; brewing time; beverages; UV visible spectrophotometer; extraction

References

  1. Mitchell DC, Knight CA, Hockenberry J, Teplansky R, Hartman TJ. Beverage caffeine intakes in the U.S. Food and Chemical Toxicology. 2014;63:136–142. Available from: https://dx.doi.org/10.1016/j.fct.2013.10.042
  2. Huvanandana J, Thamrin C, McEwan AL, Hinder M, Tracy MB. Cardiovascular impact of intravenous caffeine in preterm infants. Acta Paediatrica. 2019;108(3):423–429. Available from: https://dx.doi.org/10.1111/apa.14382
  3. Black LJ, Rowley C, Sherriff J, Pereira G, Ponsonby AL, Lucas RM. A healthy dietary pattern associates with a lower risk of a first clinical diagnosis of central nervous system demyelination. Multiple Sclerosis Journal. 2019;25(11):1514–1525. Available from: https://dx.doi.org/10.1177/1352458518793524
  4. Belay A, Ture K, Redi M, Asfaw A. Measurement of caffeine in coffee beans with UV/vis spectrometer. Food Chemistry. 2008;108(1):310–315. Available from: https://dx.doi.org/10.1016/j.foodchem.2007.10.024
  5. Maidon A, Mansoer AO, Sulistyarti H. Study of Various Solvents For Caffeine Determination Using Uv Spectrophotometeric. Journal of Applied Sciences Research. 2012;8(5):2439–2442. Available from: http://www.aensiweb.com/old/jasr/jasr/2012/2439-2442.pdf
  6. Zhang Y, Gu L, Wang F, Kong L, Qin G. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea. Molecules. 2017;22(4):560. Available from: https://dx.doi.org/10.3390/molecules22040560
  7. Russo M, Dugo P, Fanali C, Dugo L, Zoccali M, Mondello L, et al. Use of an Online Extraction Technique Coupled to Liquid Chromatography for Determination of Caffeine in Coffee, Tea, and Cocoa. Food Analytical Methods. 2018;11(10):2637–2644. Available from: https://dx.doi.org/10.1007/s12161-018-1247-5
  8. Feng X, Zhang W, Zhang T, Yao S. Systematic investigation for extraction and separation of polyphenols in tea leaves by magnetic ionic liquids. Journal of the Science of Food and Agriculture. 2018;98(12):4550–4560. Available from: https://dx.doi.org/10.1002/jsfa.8983
  9. Sökmen M, Demir E, Alomar SY. Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. The Journal of Supercritical Fluids. 2018;133(1):171–176. Available from: https://dx.doi.org/10.1016/j.supflu.2017.09.027
  10. Flores-Valdez M, Meza-Márquez OG, Osorio-Revilla G, Gallardo-Velázquez T. Identification and Quantification of Adulterants in Coffee (Coffea arabica L.) Using FT-MIR Spectroscopy Coupled with Chemometrics. Foods. 2020;9(7):851. Available from: https://dx.doi.org/10.3390/foods9070851
  11. Xia J, Wang D, Liang P, Zhang D, Du X, Ni D, et al. Vibrational (FT-IR, Raman) analysis of tea catechins based on both theoretical calculations and experiments. Biophysical Chemistry. 2020;256:106282. Available from: https://dx.doi.org/10.1016/j.bpc.2019.106282
  12. Khalid A, Ahmad S, Raza H, Batool M, Lodhi RK, Ain QT, et al. Determination of Caffeine in Soft and Energy Drinks Available in Market by using UV/Visible Spectrophotometer. Family Medicine & Medical Science Research. 2016;05(04). Available from: https://dx.doi.org/10.4172/2327-4972.1000206
  13. Amos-Tautua AT, Martin WB, Diepreye ERE. Ultra-violet Spectrophotometric Determination of Caffeine in Soft and Energy Drinks Available in Yenagoa, Nigeria. Advance Journal of Food Science and Technology. 2014;6(2):155–158. Available from: https://dx.doi.org/10.19026/ajfst.6.2
  14. Al-Bratty M, Alhazmi HA, Rehman Zu, Javed SA, Ahsan W, Najmi A, et al. Determination of Caffeine Content in Commercial Energy Beverages Available in Saudi Arabian Market by Gas Chromatography-Mass Spectrometric Analysis. Journal of Spectroscopy. 2020;2020(5):1–9. Available from: https://dx.doi.org/10.1155/2020/3716343
  15. Peng X, Brown M, Bowdler P, Honeychurch KC. Extraction-Free, Direct Determination of Caffeine in Microliter Volumes of Beverages by Thermal Desorption-Gas Chromatography Mass Spectrometry. International Journal of Analytical Chemistry. 2020;2020:1–7. Available from: https://dx.doi.org/10.1155/2020/5405184
  16. Grujić-Letić N, Rakić B, Šefer E, Milanović M, Nikšić M, Vujić I, et al. Quantitative determination of caffeine in different matrices. Macedonian Pharmaceutical Bulletin. 2016;62(1):77–84. Available from: https://dx.doi.org/10.33320/maced.pharm.bull.2016.62.01.007

Copyright

© 2021 Garg. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.