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Abstract. We define the notions of relative e-spectra, with respect
to E-operators, relative closures, and relative generating sets. We study
properties connected with relative e-spectra and relative generating sets.
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We continue to study structural properties of combinations of structures and
their theories [2, 3, 4] generalizing the notions of e-spectra, closures and generating
sets to relative ones. Properties of relative e-spectra and relative generating sets
are investigated.

In Section 1 we recall preliminary notions and results on combinations of struc-
tures and their theories, e-spectra and closures. In Section 2 relative e-spectra are
defined and their properties and values are described. In Section 3 we study families
of theories with and without least generating sets. It is shown that the property of
(non-)existence of least generating set is not preserved under extensions of families
of theories. In Section 4 we present a topological characterization of the existence
of relative least generating set and connect this property with values of e-spectra.
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1. Preliminaries

Throughout the paper we use the following terminology in [2, 3].
Let P = (Pi)i∈I , be a family of nonempty unary predicates, (Ai)i∈I be a family

of structures such that Pi is the universe of Ai, i ∈ I, and the symbols Pi are disjoint
with languages for the structures Aj , j ∈ I. The structure AP 


∪
i∈I

Ai expanded

by the predicates Pi is the P -union of the structures Ai, and the operator mapping
(Ai)i∈I to AP is the P -operator. The structure AP is called the P -combination
of the structures Ai and denoted by CombP (Ai)i∈I if Ai = (AP � Ai) � Σ(Ai),
i ∈ I. Structures A′, which are elementary equivalent to CombP (Ai)i∈I , will be
also considered as P -combinations.

Clearly, all structures A′ ≡ CombP (Ai)i∈I are represented as unions of their
restrictions A′

i = (A′ � Pi) � Σ(Ai) if and only if the set p∞(x) = {¬Pi(x) | i ∈ I}
is inconsistent. If A′ ̸= CombP (A′

i)i∈I , we write

A′ = CombP (A′
i)i∈I∪{∞},

where A′
∞ = A′ �

∩
i∈I

Pi, maybe applying Morleyzation. Moreover, we write

CombP (Ai)i∈I∪{∞}

for CombP (Ai)i∈I with the empty structure A∞.
Note that if all predicates Pi are disjoint, a structure AP is a P -combination

and a disjoint union of structures Ai. In this case the P -combination AP is called
disjoint. Clearly, for any disjoint P -combination AP , Th(AP ) = Th(A′

P ), where
A′

P is obtained from AP replacing Ai by pairwise disjoint A′
i ≡ Ai, i ∈ I. Thus, in

this case, similar to structures the P -operator works for the theories Ti = Th(Ai)
producing the theory TP = Th(AP ), being P -combination of Ti, which is denoted
by CombP (Ti)i∈I .

For an equivalence relation E replacing disjoint predicates Pi by E-classes we get
the structure AE being the E-union of the structures Ai. In this case the operator
mapping (Ai)i∈I to AE is the E-operator. The structure AE is also called the E-
combination of the structures Ai and denoted by CombE(Ai)i∈I ; here Ai = (AE �
Ai) � Σ(Ai), i ∈ I. Similar above, structures A′, which are elementary equivalent
to AE , are denoted by CombE(A′

j)j∈J , where A′
j are restrictions of A′ to its E-

classes. The E-operator works for the theories Ti = Th(Ai) producing the theory
TE = Th(AE), being E-combination of Ti, which is denoted by CombE(Ti)i∈I or
by CombE(T ), where T = {Ti | i ∈ I}.

Clearly, A′ ≡ AP realizing p∞(x) is not elementary embeddable into AP and
can not be represented as a disjoint P -combination of A′

i ≡ Ai, i ∈ I. At the
same time, there are E-combinations such that all A′ ≡ AE can be represented
as E-combinations of some A′

j ≡ Ai. We call this representability of A′ to be the
E-representability.

If there is A′ ≡ AE which is not E-representable, we have the E′-representability
replacing E by E′ such that E′ is obtained from E adding equivalence classes with
models for all theories T , where T is a theory of a restriction B of a structure
A′ ≡ AE to some E-class and B is not elementary equivalent to the structures Ai.
The resulting structure AE′ (with the E′-representability) is a e-completion, or a
e-saturation, of AE . The structure AE′ itself is called e-complete, or e-saturated, or
e-universal, or e-largest.
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For a structure AE the number of new structures with respect to the structures
Ai, i. e., of the structures B which are pairwise elementary non-equivalent and
elementary non-equivalent to the structures Ai, is called the e-spectrum of AE and
denoted by e-Sp(AE). The value sup{e-Sp(A′) | A′ ≡ AE} is called the e-spectrum
of the theory Th(AE) and denoted by e-Sp(Th(AE)).

If AE does not have E-classes Ai, which can be removed, with all E-classes
Aj ≡ Ai, preserving the theory Th(AE), then AE is called e-prime, or e-minimal.

For a structure A′ ≡ AE we denote by TH(A′) the set of all theories Th(Ai) of
E-classes Ai in A′.

By the definition, an e-minimal structure A′ consists of E-classes with a minimal
set TH(A′). If TH(A′) is the least for models of Th(A′) then A′ is called e-least.

Definition [3]. Let T be the class of all complete elementary theories of relational
languages. For a set T ⊂ T we denote by ClE(T ) the set of all theories Th(A), where
A is a structure of some E-class in A′ ≡ AE , AE = CombE(Ai)i∈I , Th(Ai) ∈ T .
As usual, if T = ClE(T ) then T is said to be E-closed.

The operator ClE of E-closure can be naturally extended to the classes T ⊂ T
as follows: ClE(T ) is the union of all ClE(T0) for subsets T0 ⊆ T .

For a set T ⊂ T of theories in a language Σ and for a sentence φ with Σ(φ) ⊆ Σ
we denote by Tφ the set {T ∈ T | φ ∈ T}.

Proposition 1.1 [3]. If T ⊂ T is an infinite set and T ∈ T \ T then T ∈ ClE(T )
(i.e., T is an accumulation point for T with respect to E-closure ClE) if and only
if for any formula φ ∈ T the set Tφ is infinite.

Theorem 1.2 [3]. For any sets T0, T1 ⊂ T , ClE(T0 ∪ T1) = ClE(T0) ∪ ClE(T1).

Definition [3]. Let T0 be a closed set in a topological space (T ,OE(T )), where
OE(T ) = {T \ ClE(T ′) | T ′ ⊆ T }. A subset T ′

0 ⊆ T0 is said to be generating if
T0 = ClE(T ′

0 ). The generating set T ′
0 (for T0) is minimal if T ′

0 does not contain
proper generating subsets. A minimal generating set T ′

0 is least if T ′
0 is contained

in each generating set for T0.

Theorem 1.3 [3]. If T ′
0 is a generating set for a E-closed set T0 then the following

conditions are equivalent:
(1) T ′

0 is the least generating set for T0;
(2) T ′

0 is a minimal generating set for T0;
(3) any theory in T ′

0 is isolated by some set (T ′
0 )φ, i.e., for any T ∈ T ′

0 there is
φ ∈ T such that (T ′

0 )φ = {T};
(4) any theory in T ′

0 is isolated by some set (T0)φ, i.e., for any T ∈ T ′
0 there is

φ ∈ T such that (T0)φ = {T}.

2. Relative e-spectra and their properties

Definition. For a structure AE and a class K of structures, the number of new
structures with respect to the structures Ai and to the classK, i. e., of the structures
B forming E-classes of models of Th(AE) such that B are pairwise elementary non-
equivalent and elementary non-equivalent to the structures Ai in AE as well as
to the structures in K, is called the relative e-spectrum of AE with respect to K
and denoted by eK-Sp(AE). The value sup{eK-Sp(A′) | A′ ≡ AE} is called the
relative e-spectrum of the theory Th(AE) with respect to K and denoted by eK-
Sp(Th(AE)).
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Similarly for a class T of theories and for a theory T = Th(AE) we denote by
eT -Sp(T ) the value eK-Sp(T ), where K = K(T ) is the class of all structures, each
of which is a model of a theory in T . The value eT -Sp(T ) is called the relative
e-spectrum of the theory T with respect to T .

Remark 2.1. 1. The class K(T ), in the definition above, can be replaced by any
subclass K ′ ⊆ K(T ) such that any structure in K(T ) is elementary equivalent to
a structure in K ′.

2. IfK1 ⊆ K2 then eK1 -Sp(T ) ≥ eK2-Sp(T ), and if T1 ⊆ T2 then eT1 -Sp(T ) ≥ eT2 -
Sp(T ).

3. The value eT -Sp(T ) is equal to the supremum |T1 \ T0| for theories of E-
classes of models of T such that T1 consists of all these theories and T0 ⊆ T1 with
ClE(T0) = T1.

Definition. Two theories T1 and T2 of a language Σ are disjoint modulo Σ0, where
Σ0 ⊆ Σ, or Σ0-disjoint if T1 and T2 are do not have common nonempty predicates
for Σ \ Σ0. If T1 and T2 are ∅-disjoint, these theories are called simply disjoint.

Families Tj , j ∈ J , of theories in the language Σ are disjoint modulo Σ0, or
Σ0-disjoint if Tj1 and Tj2 are Σ0-disjoint for any Tj1 ∈ Tj1 , Tj2 ∈ Tj2 , j1 ̸= j2. If
Tj1 and Tj2 are disjoint for any Tj1 ∈ Tj1 , Tj2 ∈ Tj2 , j1 ̸= j2, then the families Tj ,
j ∈ J , are disjoint too.

The following properties are obvious.
1. Any families of theories in a language Σ are Σ-disjoint.
2. (Monotony) If Σ0 ⊆ Σ1 ⊆ Σ then disjoint families modulo Σ0, in the language

Σ, are disjoint modulo Σ1.
3. (Monotony) If families Tj1 and Tj2 are Σ0-disjoint then any subfamilies T ′

j1
⊆

Tj1 and T ′
j2

⊆ Tj2 are Σ0-disjoint too.

Below we denote by KΣ the class of all structures in languages containing Σ such
that all predicates outside Σ are empty. Similarly we denote by TΣ the class of all
theories of structures in KΣ.

Theorem 2.2. (Relative additivity for e-spectra) If Tj, j ∈ J , are Σ0-disjoint
families then for the E-combination T = CombE(Ti)i∈I of {Ti | i ∈ I} =

∪
j∈J

Tj

and for the E-combinations Tj = CombE(Tj), j ∈ J ,

(1) eTΣ0
-Sp(T ) =

∑
j∈J

(eTΣ0
-Sp(Tj)).

Proof. Denote by T the set of theories for E-classes of models of T . Since the
families Tj are Σ0-disjoint, applying Proposition 1.1 we have that a theory T ∗

belongs to ClE(T ∗), where T ∗ ⊆ T , if and only if some of the following conditions
holds:

1) T ∗ ∈ T ∗;
2) for any formula φ ∈ T ∗ without predicate symbols in Σ\Σ0, or with predicate

symbols in Σ \ Σ0 and saying that corresponding predicates are empty, there are
infinitely many theories in T ∈ T ∗ containing φ;

3) for any formula φ ∈ T ∗, saying that some predicates in Σ \ Σ0 which used
in φ are nonempty, there are infinitely many theories in T ∈ T ∗ ∩ Tj , for some j,
containing φ; moreover, the theories T belong to the unique Tj .
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Indeed, taking a formula φ in the language Σ we have finitely many symbols
R1, . . . , Rn in Σ \ Σ0, used in φ. Considering formulas ψi saying that Rk are

nonempty, k = 1, . . . , n, we get finitely many possibilities for χδ1,...,δn 
 φ∧
n∧

k=1

ψδk
k ,

δk ∈ {0, 1}. Since φ is equivalent to
∨

δ1,...,δn

χδ1,...,δn and only subdisjunctions with

positive ψk related to the fixed Tj hold, we can divide the disjunction to disjoint
parts related to Tj . Since for φ there are finitely many related Tj , we have finitely
many cases for φ, each of which related to the fixed Tj . These cases are described in
Item 3. Item 2 deals with formulas in the language Σ0 and with formulas for empty
part in Σ\Σ0. In particular, by Proposition 1.1 these formulas define ClE(T ∗)∩TΣ0

.
Using Items 1–3 we have for T ∗ that a theory T ∗ belongs to T ∗ \TΣ0 if and only

if T ∗ belong to (T ∗ ∩Tj) \ TΣ0 for unique j ∈ J . Thus theories witnessing the value
eTΣ0

-Sp(T ) are divided into disjoint parts witnessing the values eTΣ0
-Sp(Tj). Thus

the equality (1) holds. �

Remark 2.3. Having positive ComLim [2] the equality (1) can fail if families Tj
are not Σ0-disjoint, even for finite sets J of indexes, producing

(2) eTΣ0
-Sp(T ′) <

∑
j∈J

(eTΣ0
-Sp(Tj))

for appropriate T ′.

Theorem 2.2 immediately implies

Corollary 2.4. If Tj, j ∈ J , are disjoint then for the E-combination

T = CombE(Ti)i∈I

of {Ti | i ∈ I} =
∪
j∈J

Tj and for the E-combinations Tj = CombE(Tj), j ∈ J ,

(3) eT∅-Sp(T ) =
∑
j∈J

(eT∅-Sp(Tj)).

Definition. The theory T in Theorem 2.2 is called the Σ0-disjoint E-union of the
theories Tj , j ∈ J , and the theory T in Corollary 2.4 is the disjoint E-union of the
theories Tj , j ∈ J .

Remark 2.5. Additivity (1) and, in particular, (3) can be failed without indexes
TΣ0 . Indeed, it is possible to find Tj with e-Sp(Tj) = 0 (for instance, with finite Tj)
while e-Sp(T ) can be positive. Take, for example, disjoint singletons Tn = {Tn},
n ∈ ω \ {0}, such that Tn has n-element models. We have e-Sp(Tn) = 0 for each
n while e-Sp(T ) = 1, since the theory T∞ ∈ T∅ with infinite models belong to
ClE({Tn | n ∈ ω \ {0}}). Thus, for disjoint families Tj , j ∈ J , the equality

(4) e-Sp(T ) =
∑
j∈J

(e-Sp(Tj))

can fail. Moreover, producing the effect above for definable subsets in models of Tj
we get

eTΣ0
-Sp(T ) >

∑
j∈J

(eTΣ0
-Sp(Tj)).
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At the same time, by Corollary 2.4 (respectively, by Theorem 2.2) the equality
(4) holds for (Σ0-)disjoint families Tj , j ∈ J , if J is finite and each Tj does not
generate theories in T∅ (in TΣ0).

Applying the equality (3) we take an E-combination T0 with eT∅-Sp(T0) = λ.
Furthermore we consider disjoint copies Tj , j ∈ J , of T0. Combining E-classes of all
Tj we obtain a theory T such that if J is finite then eT∅-Sp(T ) = |J | · λ. We have
the same formula if |J | ≥ ω and λ > 0 since, in this case, the E-closure for theories
of E-classes of models of T consists of theories of E-classes for theories Tj as well
some theories in T∅. If E-classes have a fixed finite or only infinite cardinalities,
this theory has models whose cardinalities (finite or countable) are equal to the
(either finite or countable) cardinality of models of Tj . Similarly, having theories
Tλ of languages Σ with cardinalities |Σ| = λ + 1 and with e-Sp(T0) = λ > 0 [2,
Proposition 4.3] and taking E-combinations with their disjoint copies we get

Proposition 2.6. For any positive cardinality λ there is a theory T such that E-
classes of models of T form copies Tj, j ∈ J , of some E-combination T0 with a
language Σ in the cardinality λ+ 1, with eT∅-Sp(T0) = λ, and eT∅-Sp(T ) = |J | · λ.
Remark 2.7. Since there are required theories T0 which do not generate E-classes
for T∅, Proposition 2.6 can be reformulated without the index T∅.

Remark 2.8. Extending the Σ0-disjoint Σ0-coordinated E-union T by definable
bijections linking E-classes we can omit the additivity (1). Indeed, adding, for
instance, bijections fjk witnessing isomorphisms for models of disjoint copies Tj
and Tj , have we eT∅-Sp(Tj) instead of eT∅-Sp(Tj) + eT∅-Sp(Tk). Thus, bijections
fjk allow to vary eT∅-Sp(T ) from λ to |J | · λ in terms of Proposition 2.6. Thus the
equality (1) can fail again producing (2) for appropriate T ′.

3. Families of theories with(out) least generating sets

Below we apply Theorem 1.3 characterizing the existence of e-least generating
sets for Σ0-disjoint families of theories.

The following natural questions arises:

Question 1. When the existence of the least generating sets for the families Tj,
j ∈ J , is equivalent to the existence of the least generating set for the family

∪
j∈J

Tj?

Question 2. Is it true that under conditions of Theorem 2.2 the existence of the
least generating sets for the families Tj, j ∈ J , is equivalent to the existence of the
least generating set for the family

∪
j∈J

Tj?

Considering Question 2, we note below that the property of the (non)existence
of the least generating sets is not preserving under expansions and extensions of
families of theories.

Proposition 3.1. Any E-closed family T0 of theories in a language Σ0 can be
transformed to an E-closed family T ′

0 in a language Σ′
0 ⊇ Σ0 such that T ′

0 consists
of expansions of theories in T0 and T ′

0 has the least generating set.

Proof. Forming Σ′
0 it suffices to take new predicate symbols RT0 , T0 ∈ T0, such that

RT0 ̸= ∅ for interpretations in the models of expansion T ′
0 of T0 and RT0 = ∅ for

interpretations in the models of expansion T ′
1 of T1 ̸= T0. Each formula ∃x̄RT0(x̄)

isolates T ′
0, and thus T ′

0 has the least generating set in view of Theorem 1.3. �
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Existence of families T0 without least generating sets implies

Corollary 3.2. The property of non-existence of least generating sets is not preserved
under expansions of theories.

Remark 3.3. The expansion T ′
0 of T0 in the proof of Proposition 3.1 produces

discrete topologies for sets of theories in T0 ∪T ′
0 . In fact, for this purpose it suffices

to isolate finite sets in T0 since any two distinct elements T0, T1 ∈ T0 are separated
by formulas φ such that φ ∈ Ti and ¬φ ∈ T1−i, i = 0, 1.

Note also that these operators of discretization transform the given set T0 to a
set T ′

0 with identical ClE .

Recall [4] that a theory T in a predicate language Σ is called language uniform,
or a LU-theory if for each arity n any substitution on the set of non-empty n-ary
predicates preserves T .

Clearly, if a set T0 has the discrete topology it can not be expanded to a set
without the least generating set. At the same time, there are expansions that
transform sets with the least generating sets to sets without the least generating
sets. Indeed, take Example in [4, Remark 3] with countably many disjoint copies Fq,
q ∈ Q, of linearly ordered sets isomorphic to ⟨ω,≤⟩ and ordering limits Jq = limFq

by the ordinary dense order on Q such that {Jq | q ∈ Q} is densely ordered. We
have a dense interval {Jq | q ∈ Q} whereas the set ∪{Fq | q ∈ Q} forms the
least generating set T0 of theories for ClE(T0). Now we expand the LU-theories
for Fq and Jq by new predicate symbol R such that R is empty for all theories
corresponding to Fq and ∀x̄R(x̄) is satisfied for all theories corresponding to Jq.
The predicate R separates the set of theories for Jq with respect to ClE . At the
same time the theories for Jq forms the dense interval producing the set without
the least generating set in view of [4, Theorem 2]. Thus, we get the following

Proposition 3.4. There is an E-closed family T0 of theories in a language Σ0 and
with the least generating set, which can be transformed to an E-closed family T ′

0 in
a language Σ′

0 ⊇ Σ0 such that T ′
0 consists of expansions of theories in T0 and T ′

0

does not have the least generating set.

Corollary 3.5. The property of existence of least generating sets is not preserved
under expansions of theories.

Remark 3.6. Adding the predicate R which separates theories for Jq from theories
for Fq, we get a copy for each Jq containing empty R. This effect is based on the
property that separating an accumulation point Jq for Fq we get new accumulation
point preserving formulas in the initial language.

Introducing the predicate R together with the discretization for Fq, E-closures
do not generate new theories.

Proposition 3.7. Any family T0 of theories in a language Σ, with infinitely many
empty predicates for all theories in T0, can be extended to a family T ′

0 in the language
Σ such that T ′

0 does not have the least generating set.

Proof. Let Σ0 ⊆ Σ consist of predicate symbols which are empty for all theories in
T0. Now we consider a family T1 of LU-theories such that all these theories have
empty predicates for Σ \ Σ0, and, using Σ0 as for [4, Theorem 2], T1 does not
have the least generating set forming a dense interval. The family T ′

0 = T0 ∪̇ T1
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extends T0 and does not have the least generating set since for any T ′′
0 ⊆ T ′

0 ,
ClE(T ′′

0 ) = ClE(T ′′
0 ∩ T0) ∪̇ClE(T ′′

0 ∩ T1). �

Corollary 3.8. The property of existence of least generating sets is not preserved
under extensions of sets of theories.

In view of Theorem 1.3 any family consisting of all theories in a given infinite
language both does not have the least generating set and does not have a proper
extension in the given language. Thus there are families of theories without least
generating sets and without extension having least generating sets. At the same
time the following proposition holds.

Proposition 3.9. There is an E-closed family T0 of theories in a language Σ and
without the least generating set such that T0 can be extended to an E-closed family
T ′
0 in the language Σ and with the least generating set.

Proof. It suffices to take Example in [4, Remark 3] that we used for the proof of
Proposition 3.4. The theories for {Jq | q ∈ Q} form a family without the least
generating set whereas an extension of this family by the theories for Fq has the
least generating set. �

Corollary 3.10. The property of non-existence of least generating sets is not
preserved under extensions of sets of theories.

Remark 3.11. If an extension of an E-closed family T0 of theories transforms T0
with the least generating set to an E-closed family T ′

0 without the least generating
set then, in view of Theorem 1.3, having the generating set in T0 consisting of
isolated points we lose this property for T ′

0 . If an extension of an E-closed family
T0 of theories transforms T0 without the least generating set to an E-closed family
T ′
0 with the least generating set then, again in view of Theorem 1.3, we add a set

of isolated theories to T0 generating all theories in T ′
0 .

Now we return to Questions 1 and 2.
Clearly, for any set T of theories, ClE(T ∩ TΣ0) ⊂ TΣ0 . Therefore ClE(T ) and

each its generating set are divided into parts: in TΣ0 and disjoint with TΣ0 . Since
Tj , j ∈ J , are disjoint with respect to TΣ0 , each Tj has the least generating set if
and only if both Tj ∩ TΣ0

and Tj \ TΣ0
have the least generating sets. Since under

conditions of Theorem 2.2 the sets Tj \TΣ0 are disjoint, j ∈ J , we have the following
proposition answering Question 1.

Proposition 3.12. The set
∪
j∈J

Tj has the least generating set if and only if

∪
j∈J

Tj

 ∩ TΣ0

has the least generating set and each Tj \ TΣ0 has the least generating set.

Since

( ∪
j∈J

Tj

)
∩TΣ0 can be an arbitrary extension of each Tj∩TΣ0 , Propositions

3.7 and 3.12 imply the following corollary answering Question 2.
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Corollary 3.13. For any infinite language Σ0 there are Σ0-disjoint families Tj, j ∈
J , with the least generating sets such that

∪
j∈J

Tj does not have the least generating

set.

4. Relative closures and relative least generating sets

Definition. Let T be a class of theories. For a set T0 ⊂ T we denote by ClE,T (T0)
the set ClE(T0) \ T . The set ClE,T (T0) is called the relative E-closure of the set T0
with respect to T , or T -relative E-closure. If T0 \ T = ClE,T (T0) then T0 is said to
be (relatively) E-closed with respect to T , or T -relatively E-closed.

Let T0 be a closed set in a topological space (T ,OE(T )). A subset T ′
0 ⊆ T0 is said

to be generating with respect to T , or T -relatively generating, if T0\T = ClE,T (T ′
0 ).

The T -relatively generating set T ′
0 (for T0) is T -minimal if T ′

0 \ T does not contain
proper subsets T ′′

0 such that T0 \ T = ClE,T ((T ′
0 ∩ T ) ∪ T ′′

0 ). A T -minimal T -
relatively generating set T ′

0 is T -least if T ′
0 \ T is contained in T ′′

0 \ T for each
T -relatively generating set T ′′

0 for T0.

Remark 4.1. Note that for T -least generating sets T ′
0 , in general, we can say that

T ′
0 are uniquely defined only with respect to T . Moreover, since ClE(T0 ∪ T1) =

ClE(T0) ∪ ClE(T1) for any sets T0, T1 ⊂ T by Theorem 1.2, then for E-closed T ,
ClE(T ′

0 ∪T ) = ClE(T ′
0 )∪T and T ′

0 is a T -least generating set if and only if T ′
0 ∪T ′

is a T -least generating set for some (any) T ′ ⊆ T , as well as if and only if T ′
0 \ T

is a T -least generating set.

The following theorem generalizes Theorem 1.3.

Theorem 4.2. If T is a E-closed set and T ′
0 is a T -relatively generating set for a

E-closed set T0 then the following conditions are equivalent:
(1) T ′

0 is the T -least generating set for T0;
(2) T ′

0 is a T -minimal generating set for T0;
(3) any theory in T ′

0 \ T is isolated by some set (T ′
0 ∪ T )φ;

(4) any theory in T ′
0 \ T is isolated by some set (T0 ∪ T )φ;

(5) any theory in T ′
0 \ T is isolated by some set (T ′

0 )φ;
(6) any theory in T ′

0 \ T is isolated by some set (T0)φ.

Proof. (1) ⇒ (2) and (4) ⇒ (3) are obvious.
(2) ⇒ (1). Assume that T ′

0 is T -minimal but not T -least. Then there is a T -
relatively generating set T ′′

0 such that T ′
0 \ (T ′′

0 ∪ T ) ̸= ∅ and T ′′
0 \ (T ′

0 ∪ T ) ̸= ∅.
Take T ∈ T ′

0 \ (T ′′
0 ∪ T ).

We assert that T ∈ ClE(T ′
0 \ ({T} ∪ T )), i.e., T is an accumulation point of

T ′
0 \ ({T}∪T ). Indeed, since T ′′

0 \ (T ′
0 ∪T ) ̸= ∅ and T ′′

0 ⊂ ClE(T ′
0 ∪T ) = ClE(T ′

0 \
T )∪ T (using that T is E-closed), then by [3, Proposition 1, (3)] (that every finite
set T ⊂ T is E-closed), T ′

0 \ T is infinite and by Proposition 1.1 it suffices to prove
that for any φ ∈ T , ((T ′

0 \ ({T} ∪ T ))φ is infinite. Assume on contrary that for
some φ ∈ T , ((T ′

0 \ ({T} ∪ T ))φ is finite. Then (T ′
0 \ T )φ is finite and, moreover, as

T ′
0 is T -relatively generating for T0, by Proposition 1.1, (T0 \ T )φ is finite, too. So

(T ′′
0 \T )φ is finite and, again by Proposition 1.1, T does not belong to ClE(T ′′

0 ∪T )
contradicting to ClE(T ′′

0 ) = T0.
Since T ∈ ClE(T ′

0 \ ({T} ∪ T )) and T ′
0 is generating for T0, then T ′

0 \ {T} is also
generating for T0 contradicting the T -minimality of T ′

0 .
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(2) ⇒ (3). If T ′
0 \ T is finite then by Proposition 2.1 (3), T ′

0 \ T = T0 \ T . Since
T0 \ T is finite and T is E-closed then for any T ∈ T0 \ T there is a formula φ ∈ T
negating all theories in (T0 \ {T}) ∪ T ). Therefore, (T0 ∪ T )φ = (T ′

0 ∪ T )φ is a
singleton containing T and thus, (T ′

0 ∪ T )φ isolates T .
Now let T ′

0 \ T be infinite. Assume that some T ∈ T ′
0 \ T is not isolated by the

sets (T ′
0 ∪ T )φ. It implies that for any φ ∈ T , ((T ′

0 \ {T}) ∪ T )φ is infinite. Using
Proposition 1.1 and the condition that T is E-closed we obtain T ∈ ClE,T (T ′

0 \{T})
contradicting the T -minimality of T ′

0 .
(3) ⇒ (2). Assume that any theory T in T ′

0 \T is isolated by some set (T ′
0 ∪T )φ.

By Proposition 1.1 it implies that T /∈ ClE((T ′
0 \{T})∪T ). Thus, T ′

0 is a T -minimal
generating set for T0.

(3) ⇒ (4) is obvious for finite T ′
0 \ T . If T ′

0 \ T is infinite and any theory T in
T ′
0 \ T is isolated by some set (T ′

0 ∪ T )φ then T is isolated by the set (T0 ∪ T )φ,
since otherwise using Proposition 1.1 and the properties that T is E-closed and T ′

0

generates T0, there are infinitely many theories in T ′
0 containing φ that contradicts

the equality |(T ′
0 ∪ T )φ| = 1.

(3) ⇔ (5) and (4) ⇔ (6) are equivalent since T is E-closed. �

Corollary 4.3. If Tj, j ∈ J , are Σ0-disjoint families then
∪
j∈J

Tj has a TΣ0-least

generating set if and only if each Tj has a TΣ0-least generating set. Moreover, if∪
j∈J

Tj has a TΣ0-least generating set T0 then T0\TΣ0 can be represented as a disjoint

union of TΣ0-least generating sets for Tj.

Proof. Using Theorem 4.2 it suffices to note that TΣ0 is E-closed and having T0\TΣ0

it consists of isolated points each of which is related to exactly one set Tj . �

Clearly, any subset of T -least generating set is again a T -least generating set
(for its E-closure). At the same time the property “to be a T -least generating set”
is preserved under finite extensions of generating sets T ′

0 disjoint with ClE(T ′
0 ):

Proposition 4.4. If T is a E-closed set, T ′
0 is a T -relatively generating set for a

E-closed set T0, and Tf is a finite subset of T disjoint with T0 then the following
conditions are equivalent:

(1) T ′
0 is the T -least generating set for T0;

(2) T ′
0 ∪ (Tf \ T0) is the T -least generating set for the E-closed set T0 ∪ Tf .

Proof. (1) ⇒ (2). If T ′
0 is a T -least generating set for T0 then by Theorem 4.2 each

theory T in T ′
0 \ T is isolated by some formula φT . Since Tf is finite then each

theory T in (T ′
0 ∪ (Tf \ T0)) \ T is isolated by some formula ψT . Again by Theorem

4.2, T ′
0 ∪ Tf is the T -least generating set for T0 ∪ Tf which is E-closed in view of

Theorem 1.2.
(2) ⇒ (1) is obvious. �

Theorem 4.5. (Decomposition Theorem) For any E-closed sets T and T ′ of a
language Σ there is a T -relatively generating set T ′

0 ∪ T ′
1 for T ′, which is disjoint

with T and satisfies the following conditions:
(1) |T ′

0 ∪ T ′
1 | ≤ max{|Σ|, ω};

(2) T ′
0 is the least generating set for its E-closure ClE(T ′

0 );
(3) ClE(T ′

0 ) ∩ T ′
1 = ∅;
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(4) T ′
1 is either empty or infinite and does not have infinite subsets satisfying

(2).

Proof. We denote by T ′
0 the set of isolated points in T ′ \ T and by T ′

1 the subset
of T ′ \ (T ∪ ClE(T ′

0 )) with a cardinality ≤ max{|Σ|, ω} such that each sentence
belonging to a theory in T ′ \(T ∪ClE(T ′

0 )) belongs to a theory in T ′
1 . Note that |T ′

0 |
is bounded by the number of sentences in the language Σ, i. e., |T ′

0 | ≤ max{|Σ|, ω},
too. Thus the condition (1) holds and T ′

0 ∪ T ′
1 is a T -relatively generating set for

T ′ in view of Proposition 1.1.
By Theorem 4.2, T ′

0 is the least generating set for ClE(T ′
0 ). Therefore the condition

(2) holds. Now (3) and (4) are satisfied since T ′
1 is separated from ClE(T ′

0 ) and does
not have isolated points. �

Theorem 4.6. If T is a E-combination of some theories Ti, i ∈ I, T is a E-closed
set of theories, and |eT -Sp(T )| < 2ω, then ClE(T ∪ {Ti | i ∈ I}) has the T -least
generating set.

Proof. By Theorem 4.2 we have to show that T ′ 
 {Ti | i ∈ I}\T has a generating
set, modulo T , of theories Ti being isolated points. Assume the contrary. Then we
have sets T ′

0 and T ′
1 in terms of Theorem 4.5, where |T ′

0 ∪T ′
1 | ≤ max{|Σ|, ω} and T ′

1

is infinite. Thus T has a model M whose all E-classes satisfy theories in T ′
0 ∪ T ′

1 .
Then we can construct a 2-tree [1] of sentences φδ, where δ are {0, 1}-tuples,

{φδ̂ 0, φδ̂ 1} are inconsistent and φδ ≡ φδ̂ 0, φδ̂ 1, such that all (T ′
1 )φδ

are infinite.
Moreover, taking negations of formulas isolating theories in T ′

1 and applying Propo-
sition 1.1 we can assume that for each f ∈ 2ω the sequence of formulas φ⟨f(0),...,f(n)⟩,
n ∈ ω, is contained in a theory belonging ClE(T ′

1 ). Thus |ClE(T ′
1 )| ≥ 2ω producing,

by M, |eT -Sp(T )| ≥ 2ω that contradicts the assumption |eT -Sp(T )| < 2ω. �

The following example shows that, in Theorem 4.6, the conditions |eT -Sp(T )| <
2ω and the existence of the T -least generating set are not equivalent.

Example 4.7. Let Σ be a language with predicates Pi, Qj , i, j ∈ ω, of same arity
(it suffices to take the arity 0). Now we consider a countable set of language uniform
theories Ti [4] such that unique Pi is satisfied and Qj are satisfied independently
for the set T = {Ti | i ∈ ω}.

All theories Ti are isolated in ClE(T ) by the formulas ∃x̄Pi(x̄). Hence, T is
the least generating set for ClE(T ). At the same time |ClE(T )| = 2ω witnessed
by theories with empty predicates Pi and independently satisfying Qj . Thus |eT -
Sp(T )| = 2ω for the theory T being the E-combination of Ti, i ∈ ω.

In conclusion, the author thanks an anonymous referee for helpful remarks which
allowed to improve the exposition.
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