Plant Soil Environ., 2017, 63(12):545-551 | DOI: 10.17221/665/2017-PSE

Silicon ameliorates the adverse effects of salt stress on sainfoin (Onobrychis viciaefolia) seedlingsOriginal Paper

Guo-Qiang WU*,1, Hai-Long LIU1, Rui-Jun FENG1, Chun-Mei WANG2, Yong-Yong DU1
1 School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, P.R. China
2 Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China

The objective of this study was to investigate whether the application of silicon (Si) ameliorates the detrimental effects of salinity stress on sainfoin (Onobrychis viciaefolia). Three-week-old seedlings were exposed to 0 and 100 mmol/L NaCl with or without 1 mmol/L Si for 7 days. The results showed that salinity stress significantly reduced plant growth, shoot chlorophyll content and root K+ concentration, but increased shoot malondialdehyde (MDA) concentration, relative membrane permeability (RMP) and Na+ concentrations of shoot and root in sainfoin compared to the control (no added Si and NaCl). However, the addition of Si significantly enhanced growth, chlorophyll content of shoot, K+ and soluble sugars accumulation in root, while it reduced shoot MDA concentration, RMP and Na+ accumulation of shoot and root in plants under salt stress. It is clear that silicon ameliorates the adverse effects of salt stress on sainfoin by limiting Na+ uptake and enhancing selectivity for K+, and by adjusting the levels of organic solutes. The present study provides physiological insights into understanding the roles of silicon in salt tolerance in sainfoin.

Keywords: sodium toxicity; compatible solutes; cell permeability; photosynthetic pigments

Published: December 31, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
WU G, LIU H, FENG R, WANG C, DU Y. Silicon ameliorates the adverse effects of salt stress on sainfoin (Onobrychis viciaefolia) seedlings. Plant Soil Environ.. 2017;63(12):545-551. doi: 10.17221/665/2017-PSE.
Download citation

References

  1. Abbas T., Balal R.M., Shahid M.A., Pervez M.A., Ayyub C.M., Aqueel M.A., Javaid M.M. (2015): Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiologiae Plantarum, 37: 6. Go to original source...
  2. Al-aghabary K., Zhu Z.J., Shi Q.H. (2005): Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27: 2101-2115. Go to original source...
  3. Ashraf M., Rahmatullah, Afzal M., Ahmed R., Mujeeb F., Sarwar A., Ali L. (2010): Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant and Soil, 326: 381-391. Go to original source...
  4. Baimiev A.K., Baimiev A.K., Gubaidullin I.I., Kulikova O.L., Chemeris A.V. (2007): Bacteria closely related to Phyllobacterium trifolii according to their 16S rRNA gene are discovered in the nodules of Hungarian sainfoin. Russian Journal of Genetics, 43: 587-590. Go to original source...
  5. Bates L.S., Waldren R.P., Teare I.D. (1973): Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207. Go to original source...
  6. Carbonero C.H., Mueller-Harvey I., Brown T.A., Smith L. (2011): Sainfoin (Onobrychis viciifolia): A beneficial forage legume. Plant Genetic Resources, 9: 70-85. Go to original source...
  7. Gibon Y., Bessieres M.A., Larher F. (1997): Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? Plant, Cell and Environment, 20: 329-340. Go to original source...
  8. Gill S.S., Tuteja N. (2010): Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909-930. Go to original source... Go to PubMed...
  9. Gupta B., Huang B.R. (2014): Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014: 1-18. Go to original source... Go to PubMed...
  10. Guntzer F., Keller C., Meunier J.-D. (2012): Benefits of plant silicon for crops: A review. Agronomy for Sustainable Development, 32: 201-213. Go to original source...
  11. Guo Q., Meng L., Mao P., Tian X. (2013): Role of silicon in alleviating salt-induced toxicity in white clover. Bulletin of Environmental Contamination and Toxicology, 91: 213-216. Go to original source... Go to PubMed...
  12. Gong H.J., Randall D.P., Flowers T.J. (2006): Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant, Cell and Environment, 29: 1970-1979. Go to original source... Go to PubMed...
  13. Kronzucker H.J., Coskun D., Schulze L.M., Wong J.R., Britto D.T. (2013): Sodium as nutrient and toxicant. Plant and Soil, 369: 1-23. Go to original source...
  14. Li H.L., Zhu Y.X., Hu Y.H., Han W.H., Gong H.J. (2015): Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiologiae Plantarum, 37: 71. Go to original source...
  15. Li Y.-T., Zhang W.-J., Cui J.-J., Lang D.-Y., Li M., Zhao Q.-P., Zhang X.-H. (2016): Silicon nutrition alleviates the lipid peroxidation and ion imbalance of Glycyrrhiza uralensis seedlings under salt stress. Acta Physiologiae Plantarum, 38: 96. Go to original source...
  16. Liu H.L., Wang Q.Q., Yu M.M., Zhang Y.Y., Wu Y.B., Zhang H.X. (2008): Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na +/H + antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant, Cell and Environment, 31: 1325-1334. Go to original source... Go to PubMed...
  17. Lu Y., Lei J.-Q., Zeng F.-J., Zhang B., Liu G.-J., Liu B., Li X.-Y. (2017): Effect of NaCl-induced changes in growth, photosynthetic characteristics, water status and enzymatic antioxidant system of Calligonum caput-medusae seedlings. Photosynthetica, 55: 96-106. Go to original source...
  18. Ma J.F., Yamaji N., Mitani-Ueno N. (2011): Transport of silicon from roots to panicles in plants. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 87: 377-385. Go to original source... Go to PubMed...
  19. Mateos-Naranjo E., Andrades-Moreno L., Davy A.J. (2013): Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiology and Biochemistry, 63: 115-121. Go to original source... Go to PubMed...
  20. Munns R., Tester M. (2008): Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681. Go to original source... Go to PubMed...
  21. Mora-Ortiz M., Swain M.T., Vickers M.J., Hegarty M.J., Kelly R., Smith L.M.J., Skøt L. (2016): De-novo transcriptome assembly for gene identification, analysis, annotation, and molecular marker discovery in Onobrychis viciifolia. BMC Genomics, 17: 756. Go to original source... Go to PubMed...
  22. Peever T.L., Higgins V.J. (1989): Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors from Cladosporium fulvum. Plant Physiology, 90: 867-875. Go to original source... Go to PubMed...
  23. Rizwan M., Ali S., Ibrahim M., Farid M., Adrees M., Bharwana S.A., Zia-Ur-Rehman M., Qayyum M.F., Abbas F. (2015): Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environmental Science and Pollution Research, 22: 15416-15431. Go to original source... Go to PubMed...
  24. Soundararajan P., Manivannan A., Ko C.H., Muneer S., Jeong B.R. (2017): Leaf physiological and proteomic analysis to elucidate silicon induced adaptive response under salt stress in Rosa hybrida 'Rock Fire'. International Journal of Molecular Sciences, 18: 1768. Go to original source... Go to PubMed...
  25. Tuna A.L., Kaya C., Higgs D., Murillo-Amador B., Aydemir S., Girgin A.R. (2008): Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 62: 10-16. Go to original source...
  26. Wang S.M., Zhao G.Q., Gao Y.S., Tang Z.C., Zhang C.L. (2005): Puccinellia tenuiflora exhibits stronger selectivity for K+ over Na + than wheat. Journal of Plant Nutrition, 27: 1841-1857. Go to original source...
  27. Wang S.-M., Zhang J.-L., Flowers T.J. (2007): Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiology, 145: 559-571. Go to original source... Go to PubMed...
  28. Wu G.-Q., Feng R.-J., Liang N., Yuan H.-J., Sun W.-B. (2015): Sodium chloride stimulates growth and alleviates sorbitolinduced osmotic stress in sugar beet seedlings. Plant Growth Regulation, 75: 307-316. Go to original source...
  29. Wu G.-Q., Jia S., Liu H.-L., Wang C.-M., Li S.-J. (2017a): Effect of salt stress on growth, ion accumulation, and distribution in sainfoins (Onobrychis viciaefolia) seedlings. Pratacultural Science, 34: 1661-1668. (In Chinese)
  30. Wu G.-Q., Feng R.-J., Li S.-J., Du Y.-Y. (2017b): Exogenous application of proline alleviates salt-induced toxicity in sainfoin seedlings. Journal of Animal and Plant Sciences, 27: 246-251.
  31. Yin L.N., Wang S.W., Li J.N., Tanaka K., Oka M. (2013): Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiologiae Plantarum, 35: 3099-3107. Go to original source...
  32. Yue L.J., Li S.X., Ma Q., Zhou X.R., Wu G.Q., Bao A.K., Zhang J.L., Wang S.M. (2012): NaCl stimulates growth and alleviates water stress in the xerophyte Zygophyllum xanthoxylum. Journal of Arid Environments, 87: 153-160. Go to original source...
  33. Zhang J.L., Shi H. (2013): Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 115: 1-22. Go to original source... Go to PubMed...
  34. Zushi K., Matsuzoe N., Kitano M. (2009): Developmental and tissue-specific changes in oxidative parameters and antioxidant systems in tomato fruits grown under salt stress. Scientia Horticulturae, 122: 362-368. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.