Plant Soil Environ., 2021, 67(1):33-39 | DOI: 10.17221/525/2020-PSE

Changes in nutrient concentration and oxidative metabolism in pecan leaflets at different doses of zincOriginal Paper

Martha I. Balandrán-Valladares1, Oscar Cruz-Alvarez1, Juan L. Jacobo-Cuellar1, Ofelia A. Hernández-Rodríguez1, María A. Flores-Córdova1, Rafael Á. Parra-Quezada1, Esteban Sánchez-Chávez2, Damaris L. Ojeda-Barrios ORCID...*,1
1 Faculty of Agrotechnological Sciences, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
2 Center for Research in Food and Development A.C., Chihuahua, Mexico

Zinc deficiency limits pecan nut production. The objective of this study was to evaluate changes in nutrient concentration and oxidative metabolism in pecan leaflets in response to the application at different doses of zinc. The foliar concentration of nutrients, leaflet area, total chlorophyll, dry weight (leaflets and root), superoxide dismutase (SOD), hydrogen peroxide, catalase (CAT), guaiacol peroxidase (GP) and antioxidant capacity were evaluated. Statistical analysis indicates that the application of 200 µmol Zn2+ affected the foliar concentration of N-total (24.50 ± 2.51 g/kg), P (10.34 ± 2.53 g/kg), Fe2+ (153.33 ± 6.27 mg/kg) and Zn2+ (42.00 ± 2.84 mg/kg), showing a greater area of the leaflet, total chlorophyll content and dry weight (leaflets and root). Plants treated with 50 µmol Zn2+ showed a higher level of SOD activity (1.38 ± 0.016 units/min/g), GP (5.56 ± 0.229 nmol glutathione/min/g), and the production of hydrogen peroxide, without exceeding the control. On the other hand, Zn treatments caused a significant decrease in CAT activity. Zn is an essential micronutrient for the growth and development of pecan, which promotes the accumulation of other nutrients. Therefore, its absence affects the generation of oxidative stress with the subsequent activation of the antioxidant defense enzyme system.

Keywords: abiotic stress; Carya illinoensis; enzymatic activity; nutrient solution; physiological parameters

Published: January 31, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Balandrán-Valladares MI, Cruz-Alvarez O, Jacobo-Cuellar JL, Hernández-Rodríguez OA, Flores-Córdova MA, Parra-Quezada RÁ, et al.. Changes in nutrient concentration and oxidative metabolism in pecan leaflets at different doses of zinc. Plant Soil Environ.. 2021;67(1):33-39. doi: 10.17221/525/2020-PSE.
Download citation

References

  1. Balafrej H., Bogusz D., Triqui Z.A., Guedira A., Bendaou N., Smouni A., Fahr M. (2020): Zinc hyperaccumulation in plants: a review. Plants (Basel), 9: E562. Go to original source... Go to PubMed...
  2. Blasco B., Graham N.S., Broadley M.R. (2015): Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply. Journal of Plant Physiology, 176: 16-24. Go to original source... Go to PubMed...
  3. Bouain N., Krouk G., Lacombe B., Rouached H. (2019): Getting to the root of plant mineral nutrition: combinatorial nutrient stresses reveal emergent properties. Trends in Plant Sciences, 24: 542-552. Go to original source... Go to PubMed...
  4. Burman U., Saini M., Kumar P. (2013): Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological and Environmental Chemistry, 95: 605-612. Go to original source...
  5. Castillo-González J., Ojeda-Barrios D., Hernández-Rodríguez A., Abadia J., Sánchez E., Parra-Quezada R., Valles-Aragón M.C., Sida-Arreola J.P. (2019): Zinc nutritional status of pecan trees influences physiological and nutritional indicators, the metabolism of oxidative stress, and yield and fruit quality. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47: 531-537. Go to original source...
  6. Feigl G., Lehotai N., Molnár Á., Ördög A., Rodríguez-Ruiz M., Palma J.M., Corpas F.J., Erdei L., Kolbert Z. (2015): Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress. Annals of Botany, 116: 613-625. Go to original source... Go to PubMed...
  7. García-López J.I., Niño-Medina G., Olivares-Sáenz E., Lira-Saldivar R.H., Barriga-Castro E.D., Vázquez-Alvarado R., RodríguezSalinas P.A., Zavala-García F. (2019): Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in Habanero peppers. Plants (Basel), 8: 254. Go to original source... Go to PubMed...
  8. Heerema R. (2013): Diagnosing Nutrient Disorders of New Mexico Pecan Trees. New Mexico, New Mexico State University. (accessed 2. 6. 2020)
  9. Heerema R.J., Van Leeuwen D., Thompson M.Y., Sherman J.D., Comeau M.J., Walworth J.L. (2017): Soil-application of zinc-EDTA increases leaf photosynthesis of immature 'Wichita' pecan trees. Journal of the American Society for Horticultural Science, 142: 27-35. Go to original source...
  10. Hounnou L., Brorsen B.W., Biermacher J.T., Rohla C.T. (2019): Foliar applied zinc and the performance of pecan trees. Journal of Plant Nutrition, 42: 512-516. Go to original source...
  11. Huang R.M., Shen C., Wang S.S., Wang Z.J. (2019): Zinc content and fruit quality of pecan as affected by application of zinc sulfate. HortScience, 54: 1243-1248. kaline soil conditions. HortScience, 44: 1736-1740. Go to original source...
  12. Núñez-Moreno J.H., Walworth J., Pond A., Kilby M. (2018): Effect of nitrogen rates on 'Western' pecan tree development. Acta Horticulturae, 1217: 103-110. Go to original source...
  13. Ojeda-Barrios D.L., Perea-Portillo E., Hernández-Rodríguez A., Ávila-Quezada G., Abadía J., Lambardini L. (2014): Foliar fertilization with zinc in pecan trees. Hortscience, 49: 562-566. Go to original source...
  14. Ojeda-Barrios D.L., Sánchez-Chávez E., Sida-Arreola J.P., ValdezCepeda R., Balandran-Valladares M. (2016): The impact of foliar nickel fertilization on urease activity in pecan trees. Journal of Soil Science and Plant Nutrition, 16: 237-247. Go to original source...
  15. Ojeda-Barrios D.L., Hernández-Rodríguez O.A., Martínez-Téllez J., Núñez-Barrios A., Perea-Portillo E. (2009): Foliar application of zinc chelates on pecan. Revista Chapingo Serie Horticultura, 15: 205-210. Go to original source...
  16. Pond A.P., Walworth J.L., Kilby M.W., Gibson R.D., Call R.E., Nunez H. (2006): Leaf nutrient levels for pecans. HortScience, 41: 1339-1341. Go to original source...
  17. Prasad T.N.V.K.V., Sudhakar P., Sreenivasulu Y., Latha P., Munaswamy V., Reddy R.K., Sreeprasad T.S., Sajanlal P.R., Pradeep T. (2012): Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35: 905-927. Go to original source...
  18. Rivera-Espejel E.A., Cruz-Alvarez O., Mejía-Muñoz J.M., GarcíaMateos M.R., Colinas-León M.T.B., Martínez-Damián M.T. (2019): Physicochemical quality, antioxidant capacity and nutri­ tional value in edible flowers of some wild dahlia species. Folia Horticulturae, 31: 331-342. Go to original source...
  19. Sánchez E., Soto J.M., García P.C., López-Lefebre L.R., Rivero R.M., Ruiz J.M., Romero L. (2000): Phenolic compounds and oxidative metabolism in green bean plants under nitrogen toxicity. Functional Plant Biology, 27: 973-978. Go to original source...
  20. Sokal R.R., Rohlf F.J. (1995): Biometry: The Principles and Practice of Statistics in Biological Research. 3rd Edition. New York, W.H. Freeman and Company, 190-196. ISBN: 0-7167-8604-4
  21. Subba P., Mukhopadhyay M., Mahato S.K., Bhutia K.D., Mondal T.K., Ghosh S.K. (2014): Zinc stress induces physiological, ultrastructural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiology and Molecular Biology of Plants, 20: 461-473. Go to original source... Go to PubMed...
  22. Tewari R.K., Kumar P., Sharma P.N. (2008): Morphology and physiology of zinc-stressed mulberry plants. Journal of Plant Nutrition and Soil Science, 171: 286-294. Go to original source...
  23. Walworth J.L., White S.A., Comeau M.J., Heerema R.J. (2017): Soilapplied ZnEDTA: vegetative growth, nut production, and nutrient acquisition of immature pecan trees grown in an alkaline, calcareous soil. HortScience, 52: 301-305. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.