Czech J. Food Sci., 2023, 41(1):73-77 | DOI: 10.17221/5/2022-CJFS

Common bean (Phaseolus vulgaris L.) seed germination improves the essential amino acid profile, flavonoid content and expansion indexShort Communication

Luis Díaz-Batalla1*, Karina Aguilar-Arteaga1, Javier Castro-Rosas2, Reyna Nallely Falfán-Cortés2, Ricardo Omar Navarro-Cortez3, Carlos Alberto Gómez-Aldapa2
1 Agroindustrial Engineering, Polytechnic University of Francisco I. Madero, Tepatepec, México
2 Centre for Chemical Research, Institute of Basic Sciences and Engineering, Autonomous University of Hidalgo State, México
3 Institute of Agricultural Sciences, Autonomous University of Hidalgo State, México

Common bean (Phaseolus vulgaris L.) is one of the most important grain legume foods for the human diet. Common bean seed is gaining attention due to its content of secondary metabolites with positive effects on human health. The present work analysed the effect of common bean germination on the essential amino acid profile, active compound content, and expansion index after extrusion processing. The content of tryptophan (Trp) in raw common bean (RCB) and in germinated common bean (GCB) seeds was 6.1 and 7.9 mg·g–1 of protein, respectively. The limiting amino acids in RCB were sulphur amino acids and Trp, and in GCB only the sulphur amino acids were the limiting amino acids. The germination process in beans increases the levels of quercetin and kaempferol and allows the synthesis of daidzein and genistein, and significantly increases the expansion index after extrusion processing. The germination of common bean could be used as a strategy to improve nutritional, nutraceutical, and processing properties.

Keywords: black bean; daidzein; extrusion; legume; tryptophan

Accepted: January 31, 2023; Prepublished online: February 22, 2023; Published: February 27, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Díaz-Batalla L, Aguilar-Arteaga K, Castro-Rosas J, Nallely Falfán-Cortés R, Navarro-Cortez RO, Gómez-Aldapa CA. Common bean (Phaseolus vulgaris L.) seed germination improves the essential amino acid profile, flavonoid content and expansion index. Czech J. Food Sci.. 2023;41(1):73-77. doi: 10.17221/5/2022-CJFS.
Download citation

References

  1. Bailly C., El Maarouf Bouteau H., Corbineau F. (2008): From intracellular signaling networks to cell death: The dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies, 331: 806-814. Go to original source... Go to PubMed...
  2. Batista K.A., Prudencio S.H., Fernandes K.F. (2010): Changes in the functional properties and antinutritional factors of extruded hard-to-cook common beans (Phaseolus vulgaris). Journal of Food Science, 75: 286-290. Go to original source... Go to PubMed...
  3. Chávez-Mendoza C., Hernández-Figueroa K.I., Sánchez E. (2019): Antioxidant capacity and phytonutrient content in the seed coat and cotyledon of common beans (Phaseolus vulgaris L.) from various regions in Mexico. Antioxidants, 8: 5. Go to original source... Go to PubMed...
  4. De la Rosa-Millán J., Heredia-Olea E., Perez-Carrillo E., Guajardo-Flores D., Serna-Saldivar S.R.O. (2019): Effect of decortication, germination and extrusion on physicochemical and in vitro protein and starch digestion characteristics of black bean (Phaseolus vulgaris). LWT - Food Science and Technology, 102: 330-337. Go to original source...
  5. Díaz-Batalla L., Widholm J.M., Fahey J.C., Castaño-Tostado E., Paredes-López O. (2006): Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 54: 2045-2052. Go to original source... Go to PubMed...
  6. Díaz-Batalla L., Hernández-Uribe J.P., Gutiérrez-Dorado R., Téllez-Jurado A., Castro-Rosas J., Pérez-Cadena R., Gómez-Aldapa C.A. (2018): Nutritional characterization of Prosopis laevigata legume tree (mesquite) seed flour and the effect of extrusion cooking on its active components. Foods, 7: 124. Dueñas M., Martínez-Villaluenga C., Limon R.I., Peñas E., Frias J. (2015): Effect of germination and elicitation of phenolic composition and bioactivity of kidney beans. Food Research International, 70: 55-63. Go to original source... Go to PubMed...
  7. FAO (2013): Dietary Protein Quality Evaluation in Human Nutrition - Report of an FAO Expert Consultation. FAO Food and Nutrition Paper, 92: 1-66. Go to PubMed...
  8. Foyer C.H., Lam H., Nguyen H.T., Siddique K.H., Varshney R.K., Colmer T.D., Cowling W., Bramley H., Mori T.A., Hodgson J.M., Cooper J.W., Miller A.J., Kunert K., Vorster J., Cullis C., Ozga J.A., Wahlqvist M.L., Liang Y., Shou H., Shi K., Yu J., Fodor N., Kaiser B.N., Wong F.L., Valliyodan B., Considine M.J. (2016): Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2: 16112. Go to original source... Go to PubMed...
  9. Fukuwatari T., Shibata K. (2013): Nutritional aspect of tryptophan metabolism. International Journal of Tryptophan Research, 6: 3-8. Go to original source... Go to PubMed...
  10. GBD 2017 Diet Collaborators (2019): Health effects of dietary risks in 195 countries, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 393: 1958-1972. Go to original source... Go to PubMed...
  11. Maeda H., Dudareva N. (2012): The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology, 63: 73-105. Go to original source... Go to PubMed...
  12. Patil R.T., Berrios J., Tang J., Swanson B.G. (2007): Evaluation of methods for expansion properties of legume extrudates. Applied Engineering and Agriculture, 23: 777-783. Go to original source...
  13. Savelkoul F.H., Tamminga S., Leenaars P.P., Schering J., Ter-Maat D.W. (1994): The degradation of lectins, phaseolin, and trypsin inhibitors during germination of white kidney beans, Phaseolus vulgaris L. Plant Foods for Human Nutrition, 45: 213-222. Go to original source... Go to PubMed...
  14. Semba R.D., Ramsing R., Rahman N., Kraemer K., Bloem M.W. (2021): Legumes as a sustainable source of protein in human diets. Global Food Security, 28: 100520. Go to original source...
  15. Vaz-Patto M.C. (2016): Grain legume protein: A hot subject. Arbor, 192: a314. Go to original source...
  16. Vogt T. (2010): Phenylpropanoid biosynthesis. Molecular Plant, 3: 2-20. Go to original source... Go to PubMed...
  17. Weller J.L., Vander-Schoor J.K, Perez-Wright E.C., Hecht V., González A.M., Capel C., Yuste-Lisboa F.J., Lozano R., Santalla M. (2019): Parallel origins of photoperiod adaptation following dual domestications of common bean. Journal of Experimental Botany, 70: 1209-1219. Go to original source... Go to PubMed...
  18. Yang Q.Q., Gan R.Y., Ge Y.Y., Zhang D., Corke H. (2018): Polyphenols in common beans (Phaseolus vulgaris L.): Chemistry, analysis and factors affecting composition. Comprehensive Reviews in Food Science and Food Safety, 17: 1518-1539. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.