Plant Protect. Sci., 2023, 59(1):59-72 | DOI: 10.17221/48/2022-PPS

Characterisation of the HbSnRK2 gene family members and revealing specific HbSnRK2.2 functions in the stress resistance of the rubber treeOriginal Paper

Yu Zhang1, Mingyang Liu1,2, Dong Zhang1, Meng Wang1*, Lifeng Wang2*
1 Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests; Ministry of Education of PRC; School of Plant Protection, Hainan University, Haikou, P.R. China
2 Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Haikou, P.R. China; State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, P.R. China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, P.R. China

SNF1-related protein kinase (SnRK2) is a critical positive regulatory factor in the abscisic acid (ABA) signalling pathway. However, the roles of the HbSnRK2 gene family members in the rubber tree, especially in response to stress, have not been thoroughly characterised. Here, we cloned six HbSnRK2 genes from the rubber tree. Based on the phylogenetic analysis, the HbSnRK2 family genes were divided into three groups. The motifs and intron numbers of HbSnRK2 were conserved. Analysis of cis-regulatory element sequences of all HbSnRK2 genes identified ABRE and TC-rich elements in the prompter of all the HbSnRK2 genes, illustrating that HbSnRK2 could be adjusted by the ABA and stress responsiveness. The qRT-PCR analysis showed that the expression patterns of the six HbSnRK2 genes differed in different tissues. The expression of these genes also differed under treatment with the plant hormone ABA, the HbSnRK2.2 gene was especially significantly expressed under the ABA treatment. Moreover, the HbSnRK2.2 gene responded to glyphosate, powdery mildew, heat stress and cold stress processes, which indicates that the HbSnRK2.2 gene plays an important role in phytohormone signalling and stress response in rubber trees. Taken together, the study provides valuable information to further define the role of the HbSnRK2 gene in rubber trees.

Keywords: SnRK2; Hevea brasiliensis Müll. Arg.; phytohormone; signal pathway

Received: April 18, 2022; Accepted: October 5, 2022; Prepublished online: January 25, 2023; Published: January 31, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zhang Y, Liu M, Zhang D, Wang M, Wang L. Characterisation of the HbSnRK2 gene family members and revealing specific HbSnRK2.2 functions in the stress resistance of the rubber tree. Plant Protect. Sci.. 2023;59(1):59-72. doi: 10.17221/48/2022-PPS.
Download citation

References

  1. Ahmad P., Rasool S., Gul A., Sheikh S.A., Akram N.A., Ashraf M., Kazi A.M., Gucel S. (2016): Jasmonates: Multifunctional roles in stress tolerance. Frontiers in Plant Science, 7: 813. doi: 10.3389/fpls.2016.00813 Go to original source... Go to PubMed...
  2. Aleman F., Yazaki J., Lee M., Takahashi Y., Kim A.Y., Li Z., Kinoshita T., Ecker J.R., Schroeder J.I. (2016): An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling. Scientific Reports, 6: 28941. doi: 10.1038/srep28941 Go to original source... Go to PubMed...
  3. Boudsocq M., Barbier-Brygoo H., Lauriere C. (2004): Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. Journal of Biological Chemistry, 279: 41758-41766. Go to original source... Go to PubMed...
  4. Coello P., Hirano E., Hey S.J., Muttucumaru N., Martinez-Barajas E., Parry M.A., Halford N.G. (2012): Evidence that abscisic acid promotes degradation of SNF1-related protein kinase (SnRK) 1 in wheat and activation of a putative calcium-dependent SnRK2. Journal of Experimental Botany, 63: 913-924. Go to original source... Go to PubMed...
  5. Deng X., Guo D., Yang S., Shi M., Chao J., Li H., Peng S., Tian W. (2018): Jasmonate signalling in the regulation of rubber biosynthesis in laticifer cells of rubber tree, Hevea brasiliensis. Journal of Experimental Botany, 69: 3559-3571. Go to original source... Go to PubMed...
  6. Fang P., Long X., Fang Y., Chen H., Yu M. (2021): A predominant isoform of fructokinase, HbFRK2, is involved in Hevea brasiliensis (para rubber tree) latex yield and regeneration. Plant Physiology and Biochemistry, 162: 211-220. Go to original source... Go to PubMed...
  7. Fujii H., Zhu J.K. (2009): Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences of the United States of America, 106: 8380-8385. Go to original source... Go to PubMed...
  8. Fujii H., Verslues P.E., Zhu J.K. (2007): Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell, 19: 485-494. Go to original source... Go to PubMed...
  9. Fujita Y., Nakashima K., Yoshida T., Katagiri T., Kidokoro S., Kanamori N., Umezawa T., Fujita M., Maruyama K., Ishiyama K., Kobayashi M., Nakasone S., Yamada K., Ito T., Shinozaki K., Yamaguchi-Shinozaki K. (2009): Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant and Cell Physiology, 50: 2123-2132. Go to original source... Go to PubMed...
  10. Fujita Y., Fujita M., Shinozaki K., Yamaguchi-Shinozaki K. (2011): ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research, 124: 509-525. Go to original source... Go to PubMed...
  11. Furihata T., Maruyama K., Fujita Y., Umezawa T., Yoshida R., Shinozaki K., Yamaguchi-Shinozaki K. (2006): Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proceedings of the National Academy of Sciences of the United States, 103: 1988-1993. Go to original source... Go to PubMed...
  12. Halford N.G., Grahame Hardie D. (1998): SNF1-related protein kinases: Global regulators of carbon metabolism in plants? Plant Molecular Biology, 37: 735-748. Go to original source... Go to PubMed...
  13. Halford N.G., Hey S.J. (2009): Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. The Biochemical Journal, 419: 247-259. Go to original source... Go to PubMed...
  14. Hrabak E.M., Chan C.W., Gribskov M., Harper J.F., Choi J.H., Halford N., Kudla J., Luan S., Nimmo H.G., Sussman M.R., Thomas M., Walker-Simmons K., Zhu J.K., Harmon A.C. (2003): The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiology, 132: 666-680. Go to original source... Go to PubMed...
  15. Huai J., Wang M., He J., Zheng J., Dong Z., Lv H., Zhao J., Wang G. (2008): Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Reports, 27: 1861-1868. Go to original source... Go to PubMed...
  16. Huang Z., Tang J., Duan W., Wang Z., Song X., Hou X. (2015): Molecular evolution, characterization, and expression analysis of SnRK2 gene family in Pak-choi (Brassica rapa ssp. chinensis). Frontiers in Plant Science, 6: 879. doi: 10.3389/fpls.2015.00879 Go to original source... Go to PubMed...
  17. Lackman P., Gonzalez-Guzman M., Tilleman S., Carqueijeiro I., Perez A.C., Moses T., Seo M., Kanno Y., Hakkinen S.T., Van Montagu M.C., Thevelein J.M., Maaheimo H., Oksman-Caldentey K.M., Rodriguez P.L., Rischer H., Goossens A. (2011): Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proceedings of the National Academy of Sciences of the United States, 108: 5891-5896. Go to original source... Go to PubMed...
  18. Lee H.J., Park Y.J., Seo P.J., Kim J.H., Sim H.J., Kim S.G., Park C.M. (2015): Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis. Plant Cell, 27: 3425-3438. Go to original source... Go to PubMed...
  19. Liu Z., Ge X., Yang Z., Zhang C., Zhao G., Chen E., Liu J., Zhang X., Li F. (2017): Genome-wide identification and characterization of SnRK2 gene family in cotton (Gossypium hirsutum L.). BMC Genetics, 18: 54. doi: 10.1186/s12863-017-0517-3 Go to original source... Go to PubMed...
  20. McLoughlin F., Galvan-Ampudia C.S., Julkowska M.M., Caarls L., Does D., Lauriere C., Munnik T., Haring M.A., Testerink C. (2012): The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant Journal, 72: 436-449. Go to original source... Go to PubMed...
  21. Mizoguchi M., Umezawa T., Nakashima K., Kidokoro S., Takasaki H., Fujita Y., Yamaguchi-Shinozaki K., Shinozaki K. (2010): Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression. Plant and Cell Physiology, 51: 842-847. Go to original source... Go to PubMed...
  22. Nie Z., Kang G., Duan C., Li Y., Dai L., Zeng R. (2016): Profiling ethylene-responsive genes expressed in the latex of the mature virgin rubber trees using cDNA microarray. PLoS One, 11: e0152039. doi: 10.1371/journal.pone.0152039 Go to original source... Go to PubMed...
  23. Peng S.H., Xu J., Li H.L., Tian W.M. (2009): Cloning and molecular characterization of HbCOI1 from Hevea brasiliensis. Bioscience, Biotechnology, and Biochemistry, 73: 665-670. Go to original source... Go to PubMed...
  24. Pirrello J., Leclercq J., Dessailly F., Rio M., Piyatrakul P., Kuswanhadi K., Tang C., Montoro P. (2014): Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. BMC Plant Biology, 14: 341. doi: 10.1186/s12870-014-0341-0 Go to original source... Go to PubMed...
  25. Priya P., Venkatachalam P., Thulaseedharan A. (2007): Differential expression pattern of rubber elongation factor (REF) mRNA transcripts from high and low yielding clones of rubber tree (Hevea brasiliensis Muell. Arg.). Plant Cell Reports, 26: 1833-1838. Go to original source... Go to PubMed...
  26. Qin B., Zheng F., Zhang Y. (2015): Molecular cloning and characterization of a Mlo gene in rubber tree (Hevea brasiliensis). Journal of Plant Physiology, 175: 78-85. Go to original source... Go to PubMed...
  27. Shao Y., Qin Y., Zou Y., Ma F. (2014): Genome-wide identification and expression profiling of the SnRK2 gene family in Malus prunifolia. Gene, 552: 87-97. Go to original source... Go to PubMed...
  28. Tang C., Yang M., Fang Y., Luo Y., Gao S., Xiao X., An Z., Zhou B., Zhang B., Tan X., Yeang H.Y., Qin Y., Yang J., Lin Q., Mei H., Montoro P., Long X., Qi J., Hua Y., He Z., Sun M., Li W., Zeng X., Cheng H., Liu Y., Yang J., Tian W., Zhuang N., Zeng R., Li D., He P., Li Z., Zou Z., Li S., Li C., Wang J., Wei D., Lai C.Q., Luo W., Yu J., Hu S., Huang H. (2016): The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants, 2: 16073. doi: 10.1038/nplants.2016.73 Go to original source... Go to PubMed...
  29. Tungngoen K., Viboonjun U., Kongsawadworakul P., Katsuhara M., Julien J.L., Sakr S., Chrestin H., Narangajavana J. (2011): Hormonal treatment of the bark of rubber trees (Hevea brasiliensis) increases latex yield through latex dilution in relation with the differential expression of two aquaporin genes. Journal of Plant Physiology, 168: 253-262. Go to original source... Go to PubMed...
  30. Umezawa T., Sugiyama N., Mizoguchi M., Hayashi S., Myouga F., Yamaguchi-Shinozaki K., Ishihama Y., Hirayama T., Shinozaki K. (2009): Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 106: 17588-17593. Go to original source... Go to PubMed...
  31. Wang P., Zhu J.K., Lang Z. (2015): Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins. Plant Signaling & Behavior, 10: e1031939. doi: 10.1080/15592324.2015.1031939 Go to original source... Go to PubMed...
  32. Wasilewska A., Vlad F., Sirichandra C., Redko Y., Jammes F., Valon C., Frei dit Frey N., Leung J. (2008): An update on abscisic acid signaling in plants and more. Molecular Plant, 1: 198-217. Go to original source... Go to PubMed...
  33. Wu P., Wang W., Duan W., Li Y., Hou X. (2017): Comprehensive analysis of the CDPK-SnRK superfamily genes in Chinese cabbage and its evolutionary implications in plants. Frontiers in Plant Science, 8: 162. doi: 10.3389/fpls.2017.00162 Go to original source... Go to PubMed...
  34. Yan J., Wang P., Wang B., Hsu C.C., Tang K., Zhang H., Hou Y.J., Zhao Y., Wang Q., Zhao C., Zhu X., Tao W.A., Li J., Zhu J.K. (2017): The SnRK2 kinases modulate miRNA accumulation in Arabidopsis. PLoS Genetics, 13: e1006753. doi: 10.1371/journal.pgen.1006753 Go to original source... Go to PubMed...
  35. Yu H., Zhang Y., Xie Y., Wang Y., Duan L., Zhang M., Li Z. (2017): Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability. Journal of Plant Physiology, 214: 123-133. Go to original source... Go to PubMed...
  36. Zhang H., Mao X., Jing R. (2011): SnRK2 acts within an intricate network that links sucrose metabolic and stress signaling in wheat. Plant Signaling & Behavior, 6: 652-654. Go to original source... Go to PubMed...
  37. Zhang H., Jia H., Liu G., Yang S., Zhang S., Yang Y., Yang P., Cui H. (2014): Cloning and characterization of SnRK2 subfamily II genes from Nicotiana tabacum. Molecular Biology Reports, 41: 5701-5709. Go to original source... Go to PubMed...
  38. Zhu J., Zhang Z. (2009): Ethylene stimulation of latex production in Hevea brasiliensis. Plant Signaling & Behavior, 4: 1072-1074. Go to original source... Go to PubMed...
  39. Zou Z., Gong J., An F., Xie G., Wang J., Mo Y., Yang L. (2015): Genome-wide identification of rubber tree (Hevea brasiliensis Muell. Arg.) aquaporin genes and their response to ethephon stimulation in the laticifer, a rubber-producing tissue. BMC Genomics, 16: 1001. doi: 10.1186/s12864-015-2152-6 Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.