Plant Protect. Sci., 2013, 49(10):S41-S54 | DOI: 10.17221/45/2013-PPS

Effect of extreme temperatures on powdery mildew development and Hsp70 induction in tomato and wild Solanum spp.Original Paper

Lucie KUBIENOVÁ1, Michaela SEDLÁŘOVÁ2, Andrea VÍTEČKOVÁ-WÜNSCHOVÁ3, Jana PITERKOVÁ1, Lenka LUHOVÁ1, Barbora MIESLEROVÁ2, Aleš LEBEDA2, Milan NAVRÁTIL3, Marek PETŘIVALSKÝ1
1 Department of Biochemistry, Faculty of Science, Palacky University in Olomouc, Olomouc, Czech Republic
2 Department of Botany, Faculty of Science, Palacky University in Olomouc, Olomouc, Czech Republic
3 Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Olomouc, Czech Republic

Changes in Hsp70 gene expression and protein level were studied in three Solanum spp. genotypes in response to short-term high and low temperatures and to infection by powdery mildew. Development of Oidium neolycopersici was compared on plant leaves and leaf discs with regard to the influence of temperature. Heat and especially cold pre-treatment of host tissues inhibited pathogenesis and decreased chlorophyll concentration. Exposure to heat increased Hsp70 (70 kDa heat shock proteins) content in all three genotypes of Solanum spp., whereas the infection induced the accumulation of Hsp70 only in susceptible S. lycopersicum. These results are in accordance with the suggested role of Hsp70 chaperons in plant responses to metabolic pathway disturbances triggered by pathogen challenge.

Keywords: heat shock proteins; Oidium neolycopersici; real-time PCR; Western blot

Published: December 31, 2013  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
KUBIENOVÁ L, SEDLÁŘOVÁ M, VÍTEČKOVÁ-WÜNSCHOVÁ A, PITERKOVÁ J, LUHOVÁ L, MIESLEROVÁ B, et al.. Effect of extreme temperatures on powdery mildew development and Hsp70 induction in tomato and wild Solanum spp. Plant Protect. Sci.. 2013;49(Special Issue):S41-54. doi: 10.17221/45/2013-PPS.
Download citation

References

  1. Adam Z., Clarke A.K. (2002): Cutting edge of chloroplast proteolysis. Trends in Plant Science, 7: 451-456. Go to original source... Go to PubMed...
  2. Al-Niemi T.S., Stout R.G. (2002): Heat-shock protein expression in a perennial grass commonly associated with active geothermal areas in western North America. Journal of Thermal Biology, 27: 547-553. Go to original source...
  3. Banzet N., Richaud C., Deveaux Y., Kazmaier M., Gagnon J., Triantaphylidés C. (1998): Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant Journal, 13: 519-527. Go to original source... Go to PubMed...
  4. Boston R.S., Viitanen P.V., Vierling E. (1996): Molecular chaperones and protein folding in plants. Plant Molecular Biology, 32: 191-222. Go to original source... Go to PubMed...
  5. Bukau B., Horwich A.L. (1998): The Hsp70 and Hsp60 chaperone machines. Cell, 92: 351-366. Go to original source... Go to PubMed...
  6. Burke J.J. (2001): Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiologia Plantarum, 112: 167-170. Go to original source...
  7. Byth H.A., Kuun K.G., BornmaN L. (2001): Virulencedependent induction of Hsp70/Hsc70 in tomato by Ralstonia solanacearum. Plant Physiology and Biochemistry, 39: 697-705. Go to original source...
  8. Camejo D., Rodríguez P., Morales M.A., Dell'Amico J.M., Torrecillas A., Alarcón J.J. (2005): High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162: 281-289. Go to original source...
  9. Chamberlain D.W., Gerdemann J.W. (1966): Heatinduced susceptibility of soybeans to Phytophthora megasperma var. sojae, Phytophthora cactorum, and Helminthosporium sativum. Phytopathology, 56: 70-73.
  10. Chen Z.J., Ribeiro A., Silva M.C., Santos P., GuerraGuimarÃes L., Gouveia M., Fernandez D., Rodrigues C.J. Jr. (2003): Heat shock-induced susceptibility of green coffee leaves and berries to Colletotrichum gloeosporioides and its association to PR- and hsp70 gene expression. Physiological and Molecular Plant Pathology, 63: 181-190. Go to original source...
  11. Cheong Y.H., Chany H.S., Gusta R., Wang X., Zhu T., Luan S. (2002): Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology, 129: 661-677. Go to original source... Go to PubMed...
  12. Cho E.K., Choi Y.J. (2009): A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants. Biotechnology Letters, 31: 597-606. Go to original source... Go to PubMed...
  13. Cohen R. (1993): A leaf disk assay for detection of resistance of melons to Sphaerotheca fuliginea race 1. Plant Disease, 77: 513-517. Go to original source...
  14. Fernandez-MuÑoz R., Gonzalez-Fernandez J.J., Cuartero J. (1995): Variability of pollen tolerance to low-temperatures in tomato and related wild-species. The Journal of Horticultural Science & Biotechnology, 70: 41-49. Go to original source...
  15. Garavaglia B.S., Garofal C.G., Orellano E.G., Ottado J. (2009): Hsp70 and Hsp90 expression in citrus and pepper plants in response to Xanthomonas axonopodis pv. citri. European Journal of Plant Patology, 123: 91-97. Go to original source...
  16. Gorovits R., Czosnek H. (2008): Expression of stress gene networks in tomato lines susceptible and resistant to Tomato yellow leaf curl virus in response to abiotic stress. Plant Physiology and Biochemistry, 46: 482-492. Go to original source... Go to PubMed...
  17. Gupta S.C., Sharma A., Mishra M., Mishra R., Chowdhuri D.K. (2010): Heat shock proteins in toxicology: how close and how far? Life Science, 86: 377-384. Go to original source... Go to PubMed...
  18. Guy C.L., Li Q.B. (1998): The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell, 10: 539-556. Go to original source... Go to PubMed...
  19. Hubert D.A., He Y., McNulty B.C., Tornero P., Dangl J.L. (2009): Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation. Proceedings of National Academy of Science USA, 106: 9556-9563. Go to original source... Go to PubMed...
  20. Iba K. (2002): Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Annual Reviews in Plant Biology, 53: 225-245. Go to original source... Go to PubMed...
  21. Jelenska J., Van Hal J.A., Greenberg J.T. (2010): Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proceedings of National Academy of Science USA, 107: 13177-13182. Go to original source... Go to PubMed...
  22. Kotak S., Larkindale J., Lee U., von Koskull-Döring P., Vierling E., Scharf K.D. (2007): Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 10: 310-316. Go to original source... Go to PubMed...
  23. Kregel K.C. (2002): Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physiology, 92: 2177-2186. Go to original source... Go to PubMed...
  24. Lebeda A., Mieslerová B. (2010): Screening for resistance to tomato powdery mildew (Oidium neolycopersici). In: Mass Screening Techniques for Selecting Crops Resistant to Disease. International Atomic Energy Agency (IAEA), Vienna, Austria, Chapter 16: 257-265.
  25. Lebeda A., Křístková E., Sedláková B., Coffey M.D., McCreight J.D. (2011): Gaps and perspectives of pathotype and race determination in Golovinomyces cichoracearum and Podosphaera xanthii. Mycoscience, 52: 159-164. Go to original source...
  26. Lebeda A., Mieslerová B., Petrželová I., Korbelová P. (2013): Host specificity and virulence variation in populations of lettuce powdery mildew pathogen (Golovinomyces cichoracearum) from prickly lettuce (Lactuca serriola). Mycological Progress, 12: 533-545. Go to original source...
  27. Li Q.B., Haskell D.W., Guy C.L. (1999): Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Molecular Biology, 39: 21-34. Go to original source... Go to PubMed...
  28. Li H.W., Zang B.S., Deng X.W., Wang X.P. (2011): Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 234: 1007-1018. Go to original source... Go to PubMed...
  29. Lichtenthaler H.K., Buschmann C. (2001): Chlorophylls and carotenoids - Measurement and characterization by UV-VIS. In: Lichtenthaler H.K. (ed.): Current Protocols in Food Analyticial Chemistry (CPFA), (Supplement 1). Wiley, New York. Go to original source...
  30. Lin B.L., Wang J.S., Liu H.C., Chen R.W., Meyer Y., Barakat A., Delseny M. (2001): Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones, 6: 201-208. Go to original source...
  31. Lindquist S., Crig E.A. (1988): The heat-shock proteins. Annual Reviews in Genetics, 22: 631-677. Go to original source... Go to PubMed...
  32. Maimbo M., Ohnishi K., Hikichi Y., Yoshioka H., Kiba A. (2007) Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiology, 145:1588-99. Go to original source... Go to PubMed...
  33. Mieslerová B., Lebeda A. (2010): Influence of temperature and light conditions on germination, growth and conidiation of Oidium neolycopersici. Journal of Phytopathology, 158: 616-627. Go to original source...
  34. Mieslerová B., Lebeda A., Chetelat R.T. (2000): Variation in response of wild Lycopersicon and Solanum spp. against tomato powdery mildew (Oidium lycopersici). Journal of Phytopathology, 148: 303-311. Go to original source...
  35. Mieslerová B., Lebeda A., Kennedy R. (2004): Variation in Oidium neolycopersici development on host and nonhost plant species and their tissue defence responses. Annals of Applied Biology, 144: 237-248. Go to original source...
  36. Mlíčková K., Luhová L., Lebeda A., Mieslerová B., Peč P. (2004): Reactive oxygen species generation and peroxidase activity during Oidium neolycopersici infection on Lycopersicon species. Plant Physiology and Biochemistry, 42: 753-761. Go to original source... Go to PubMed...
  37. Morimoto R.I., Santoro M.G. (1998): Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nature Biotechnology, 16: 833-838. Go to original source... Go to PubMed...
  38. Morimoto R.I., Tissieres A., Georgopoulos C. (1994): Heat Shock Proteins: Structure, Function and Regulation. Cold Spring Barbor Laboratory Press, Cold Spring Harbor.
  39. Nakamoto H., Hiyama T. (1999): Heat-shock proteins and temperature. In: Pessarakli M. (ed.).: Hand Book of Crops and Plant Stress. Marcel Dekker, New York.
  40. Nakazato T., Warren D.L., Moyle L.C. (2010): Ecological and geographic modes of species divergence in wild tomatoes. American Journal of Botany, 97: 680-693. Go to original source... Go to PubMed...
  41. Neta-Sharir I., Isaacson T., Lurie S., Weiss D. (2005): Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting colour changes during fruit maturation. The Plant Cell, 17: 1829-1838. Go to original source... Go to PubMed...
  42. Nožková-Hlaváčková V., Mieslerová B., Luhová L., Prokopová J., Piterková J., Novák O., Špundová M., Nauš J., Lebeda A. (2013): Does heat-shock pretreatment influence development of powdery mildew infection and biochemical responses in susceptible and moderately resistant tomato plants? Prepared for press.
  43. Olmstead J.W., Lang G.A., Grove G.G. (2000): A leaf disk assay for screening sweet cherry genotypes for susceptibility to powdery mildew. Hortscience, 35: 274-277. Go to original source...
  44. Pastori G.M., Foyer Ch.H. (2002): Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid-mediated controls. Plant Physiology, 129: 460-468. Go to original source... Go to PubMed...
  45. Pfaffl M.W. (2001): A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 2: e45. Go to original source... Go to PubMed...
  46. Piterková J., Petřivalský M., Luhová L., Mieslerová B., Sedlářová M., Lebeda A. (2009): Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. Molecular Plant Pathology, 10: 501-513. Go to original source... Go to PubMed...
  47. Piterková J., Hofman J., Mieslerová B., Sedlářová M., Luhová L., Lebeda A., Petřivalský M. (2011): Dual role of nitric oxide in Solanum spp.-Oidium neolycopersici interaction. Environmental and Experimental Botany, 74: 37-44. Go to original source...
  48. Piterková J., Luhová L., Mieslerová B., Lebeda A., Petřivalský M. (2013): Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. Plant Science, 207: 57-65. Go to original source... Go to PubMed...
  49. Prokopová J., Mieslerová B., Hlaváčková V., Hlavinka J., Lebeda A., Nauš J., Špundová M. (2010): Changes in photosynthesis of Lycopersicon spp. plants induced by tomato powdery mildew infection in combination with heat shock pre-treatment. Physiological and Molecular Plant Pathology, 74: 205-213. Go to original source...
  50. Ritossa F. (1962): A new puffing pattern induced by temperature shock and DNP in Drosophila. Cellular and Molecular Life Sciences, 18: 571-573. Go to original source...
  51. Ritossa F. (1996): Discovery of the heat shock response. Cell Stress Chaperones, 1: 97-98. Go to original source...
  52. Sabehat A., Weiss D., Lurie S. (1996): The correlation between heat shock protein accumulation and persistence and chilling tolerance in tomato fruit. Plant Physiology, 110: 531-537. Go to original source... Go to PubMed...
  53. Schlesinger M.J. (1989): The cellular response to stress. American Journal of Respiratory Cell and Molecular Biology, 1: 87-88. Go to original source... Go to PubMed...
  54. Schöffl F., Prandl R., Reindl A. (1998): Regulation of the heat-shock response. Plant Physiology, 117: 1135-1141. Go to original source... Go to PubMed...
  55. Schweizer P., Vallélian-Bindschedler L., Mosinger E. (1995): Heat-induced resistance in barley to the powdery mildew fungus Erysiphe graminis f.sp. hordei. Physiological and Molecular Plant Pathology, 47: 51-66. Go to original source...
  56. Smirnoff N. (1998): Plant resistance to environmental stress. Current Opinion in Biotechnology, 9: 214-219. Go to original source... Go to PubMed...
  57. Schnathorst W.C., Bardin R. (1958): Susceptibility of lettuce varieties and hybrids to powdery mildew (Erysiphe cichoracearum). Plant Disease Report, 42: 1273-1274.
  58. Sung D.Y., Vierling E., Guy C.L. (2001): Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiology, 126: 789-800. Go to original source... Go to PubMed...
  59. Swindell W.R., Huebner M., Weber A.P. (2007): Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 8: 125. Go to original source... Go to PubMed...
  60. Vallélian-Bindschedler L., Schweizer P., Mosinger E., Metraux J.P. (1998): Heat-induced resistance in barley to powdery mildew (Blumeria graminis f.sp. hordei) is associated with a burst of active oxygen species. Physiological and Molecular Plant Pathology, 52: 185-199. Go to original source...
  61. Venema J.H., Posthumus F., Van Hasselt P.R. (1999): Impact of suboptimal temperature on growth, photosynthesis, leaf pigments and carbohydrates of domestic and high-altitude wild Lycopersicon species. Journal of Plant Physiology, 155: 711-718. Go to original source...
  62. Venema J.H., Linger P., Van Heusden A.W., Van Hasselt P.R., Brűggemann W. (2005): The inheritance of chilling-tolerance in tomato (Lycopersicon spp.). Plant Biology, 7: 118-130. Go to original source... Go to PubMed...
  63. Vierling E. (1991): The roles of heat shock proteins in plants. Annual Review in Plant Physiology and Plant Molecular Biology, 42: 579-620. Go to original source...
  64. Wahid A., Gelani S., Ashraf M., Foolad M.R. (2007): Heat tolerance in plants: an overview. Environmental Experimental Botany, 61: 199-223. Go to original source...
  65. Wang W., Vinocur B., Shoseyov O., Altman A. (2004): Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9: 244-252. Go to original source... Go to PubMed...
  66. Wimmer B., Lottspeich F., Van Der Klei I., Veenhuis M., Gietl C. (1997): The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single gene. Proceedings of the National Academy of Sciences USA, 94: 13624-13629. Go to original source... Go to PubMed...
  67. Zhang H., Fu X., Jiao W., Zhang X., Liu C. Chang Z. (2005): The association of small heat shock protein Hsp16.3 with the plasma membrane of Mycobacterium tuberculosis: dissociation of oligomers is a prerequisite. Biochemical and Biophysical Research Communications, 330: 1055-1061. Go to original source... Go to PubMed...
  68. Zhang Z.L., Zhu J.H., Zhang Q.Q., Caj Y.B. (2009): Molecular characterization of an ethephon-induced Hsp70 involved in high and low-temperature responses in Hevea brasiliensis. Plant Physiology and Biochemistry, 47: 954-959. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.