Plant Protect. Sci., 2022, 58(3):173-184 | DOI: 10.17221/37/2020-PPS

Role of nanoparticles in management of plant pathogens and scope in plant transgenics for imparting disease resistanceReview

Aflaq Hamid1, Sahar Saleem ORCID...*,2
1 Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
2 Division of Animal Biotechnology, FVSc & AH, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India

Current efforts are focused on the search for efficient methods of pathogen management that will not result in damage to the environment or cause an imbalance in the existing biota. One of the strategies for this is the use of nanoparticles in agriculture for disease management. This review presents a summative view on the various applications of nanoparticles in conferring disease resistance to crops and the possibility of using nanoparticles as carriers of genetic material for the generation of disease resistant crops. Nanoparticles are directly being used for the control of pathogens. Nanoparticles have been used as antiviral, antifungal and antibacterial agents. The nano-encapsulation of pesticides in controlled release matrices is one of the most promising research areas for the future. Nano-encapsulation has been shown to increase the efficiency of pesticides, reduce their volatilisation and decrease the toxicity and environmental contamination in crops. Nano-encapsulated agrochemicals or biomolecules can be engineered to be released in a controlled manner and in a target-specific location. Nanoparticles also have great scope in the field of transgenics vis-à-vis pathogen resistance. The field of agriculture can be revolutionised by the use of nanoparticles for imparting disease resistance in crops. The field is so versatile that the possibilities are endless.

Keywords: gene-editing; nano-encapsulation; plant protection; gene silencing; disease management; nano-pesticide

Published: May 19, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hamid A, Saleem S. Role of nanoparticles in management of plant pathogens and scope in plant transgenics for imparting disease resistance. Plant Protect. Sci.. 2022;58(3):173-184. doi: 10.17221/37/2020-PPS.
Download citation

References

  1. Abdelkhalek A., Al-Askar A.A. (2020): Green synthesized ZnO nanoparticles mediated by Mentha spicata extract induce plant systemic resistence against Tobacco mosaic virus. Applied Sciences, 10: 5054. doi: 10.3390/app10155054 Go to original source...
  2. Akamatsu K., Kaneko D., Sugawara T., Kikuchi R., Nakao S.I. (2010): Three preparation methods for monodispersed chitosan microspheres using the shirasu porous glass membrane emulsification technique and mechanisms of microsphere formation. Industrial and Engineering Chemistry Research, 49: 3236-3241. Go to original source...
  3. Alkubaisi N.A.O., Aref N.M.M.A., Hendi A.A. (2015): Method of inhibiting plant virus using gold nanoparticles. US Patent No. 9198434B1, December 1, 2015.
  4. Azam A., Ahmed A.S., Oves M., Khan M., Memic A. (2012): Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. International Journal of Nanomedicine, 7: 3527-3535. Go to original source... Go to PubMed...
  5. Bautista-Baños S., Hernandez-Lauzardo A.N., Velazquez-Del Valle M.G., Hernández-López M., Barka E.A., BosquezMolina E., Wilson C. (2006): Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection, 25:108-118. Go to original source...
  6. Behlke M.A. (2006): Progress towards in vivo use of siRNAs. Molecular Therapy, 13: 644-670. Go to original source... Go to PubMed...
  7. Bhat S.S., Qurashi A., Khanday F.A. (2017): ZnO nanostructures based biosensors for cancer and infectious disease applications: Perspectives, prospects and promises. TrAC Trends in Analytical Chemistry, 86: 1-13. Go to original source...
  8. Bhattacharya R., Mukherjee P. (2008): Biological properties of "naked" metal nanoparticles. Advanced Drug Delivery Reviews, 60: 1289-1306. Go to original source... Go to PubMed...
  9. Bouwmeester H., Dekkers S., Noordam M.Y., Hagens W.I., Bulder A.S., De Heer C., Ten Voorde S.E., Wijnhoven S.W., Marvin H.J., Sips A.J. (2009): Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology, 53: 52-62. Go to original source... Go to PubMed...
  10. Bowman M.C., Ballard T.E., Ackerson C.J., Feldheim D.L., Margolis D.M., Melander C. (2008): Inhibition of HIV fusion with multivalent gold nanoparticles. Journal of the American Chemical Society, 130: 6896-6897. Go to original source... Go to PubMed...
  11. Bryaskova R., Pencheva D., Nikolov S., Kantardjiev T. (2011): Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). Journal of Chemical Biology, 4: 185-191. Go to original source... Go to PubMed...
  12. Cai L., Liu C., Fan G., Liu C., Sun X. (2019): Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicothiana benthamiana. Environmental Science: Nano, 6: 3653-3669. Go to original source...
  13. Chirkov S. (2002): The antiviral activity of chitosan (review). Applied Biochemistry and Microbiology, 38: 1-8. Go to original source...
  14. Christou P., McCabe D.E., Swain W.F. (1988): Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiology, 87: 671-674. Go to original source... Go to PubMed...
  15. Cota-Arriola O., Cortez-Rocha M.O., Rosas-Burgos E.C., Burgos-Hernández A., López-Franco Y.L., Plascencia-Jatomea M. (2011): Antifungal effect of chitosan on the growth of Aspergillus parasiticus and production of aflatoxin B1. Polymer International, 60: 937-944. Go to original source...
  16. Daniel M.C., Astruc D. (2004): Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104: 293-346. Go to original source... Go to PubMed...
  17. Davis M.E., Shin D.M. (2008): Nanoparticle therapeutics: An emerging treatment modality for cancer. Nature Reviews Drug Discovery, 7: 771-782. Go to original source... Go to PubMed...
  18. De M., Ghosh P.S., Rotello V.M. (2008): Applications of nanoparticles in biology. Advanced Materials, 20: 4225-4241. Go to original source...
  19. Derfus A.M., Chen A.A., Min D.H., Ruoslahti E., Bhatia S.N. (2007): Targeted quantum dot conjugates for siRNA delivery. Bioconjugate Chemistry, 18: 1391-1396. Go to original source... Go to PubMed...
  20. Dinesh-Kumar S., Anandalakshmi R., Marathe R., Schiff M., Liu Y. (2003): Virus-induced gene silencing. Plant Functional Genomics, 236: 287-293. Go to original source... Go to PubMed...
  21. Dong O.X., Ronald C.P. (2019): Genetic engineering for disease resistance in plants: Recent progress and future perspectives. Plant Physiology, 180: 26-38. Go to original source... Go to PubMed...
  22. Du W.L., Xu Y.L., Xu Z.R., Fan C.L. (2008): Preparation, characterization and antibacterial properties against E. coli K88 of chitosan nanoparticle loaded copper ions. Nanotechnology, 19: 085707. doi: 10.1088/0957-4484/19/8/085707 Go to original source... Go to PubMed...
  23. El Ghaouth A., Arul J., Wilson C., Benhamou N. (1994): Ultrastructural and cytochemical aspects of the effect of chitosan on decay of bell pepper fruit. Physiological and Molecular Plant Pathology, 44: 417-432. Go to original source...
  24. Elmer W., Torre-Roche R.D.L., Pagano L., Majumdar S., Zuverza-Mena N., Dimkpa C., Gardea-Torresday J., White J.C. (2018): Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Disease, 102: 1394-1401. Go to original source... Go to PubMed...
  25. Filipenko E., Filipenko M., Deineko E., Shumnyi V. (2007): Analysis of integration sites of T-DNA insertions in transgenic tobacco plants. Cytology and Genetics, 41: 199-203. Go to original source...
  26. Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. (1998): Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391: 806-811. Go to original source... Go to PubMed...
  27. Ghormade V., Deshpande M.V., Paknikar K.M. (2011): Perspectives for nanobiotechnologyenabled protection and nutrition of plants. Biotechnology Advances, 29: 792-803. Go to original source... Go to PubMed...
  28. Ghosh P.S., Kim C.K., Han G., Forbes N.S., Rotello V.M. (2008a): Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano, 2: 2213-2218. Go to original source... Go to PubMed...
  29. Ghosh P., Han G., De M., Kim C.K., Rotello V.M. (2008b): Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60: 1307-1315. Go to original source... Go to PubMed...
  30. Gleiter H. (2000): Nanostructured materials: Basic concepts and microstructure. Acta Materialia, 48: 1-29. Go to original source...
  31. Gogos A., Knauer K., Bucheli T.D. (2012): Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60: 9781-9792. Go to original source... Go to PubMed...
  32. González-Melendi P., Fernández-Pacheco R., Coronado M.J., Corredor E., Testillano P., Risueño M.C., Marquina C., Ibarra M.R., Rubiales D., Pérez-de-Luque A. (2008): Nanoparticles as smart treatment-delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues. Annals of Botany, 101: 187-195. Go to original source... Go to PubMed...
  33. Hermida-Montero L.A., Pariona N., Mtz-Enriquez A.I., Carrion G., Delgado-Paraguay F., Rosas-Saito G. (2019): Aqueous-phase synthesis of nanoparticles of copper/ copper oxides and their antifungal effect against Fusarium oxysporium. Journal of Hazardous Materials, 380: 120850. doi: 10.1016/j.jhazmat.2019.120850 Go to original source... Go to PubMed...
  34. Huang L., Cheng X., Liu C., Xing K., Zhang J., Sun G., Li X., Chen X. (2009): Preparation, characterization, and antibacterial activity of oleic acid-grafted chitosan oligosaccharide nanoparticles. Frontiers of Biology in China, 4: 321-327. Go to original source...
  35. Huang W.F., Tsui G.C., Tang C.Y., Yang M. (2016): Fabrication and process investigation of vancomycin loaded silica xerogel/polymer core shell composite nanoparticles for drug delivery. Composites Part B: Engineering, 95: 272-281. Go to original source...
  36. Jayaseelan C., Rahuman A.A., Kirthi A.V., Marimuthu S., Santhoshkumar T., Bagavan A., Gaurav K., Karthik L., Rao K.B. (2012): Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90: 78-84. Go to original source... Go to PubMed...
  37. Jin R., Wu G., Li Z., Mirkin C.A., Schatz G.C. (2003): What controls the melting properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemical Society, 125: 1643-1654. Go to original source... Go to PubMed...
  38. Khodakovskaya M.V., de Silva K., Nedosekin D.A., Dervishi E., Biris A.S., Shashkov E.V., Galanzha E.I., Zharov V.P. (2011): Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences, 108: 1028-1033. Go to original source... Go to PubMed...
  39. Kim S.T., Saha K., Kim C., Rotello V.M. (2013): The role of surface functionality in determining nanoparticle cytotoxicity. Accounts of Chemical Research, 46: 681-691. Go to original source... Go to PubMed...
  40. Kochkina Z., Pospeshny G., Chirkov S. (1994): Inhibition by chitosan of productive infection of T-series bacteriophages in the Escherichia coli culture. Microbiology, 64: 211-215.
  41. Krisnaraj C., Ramachandran R., Mohan K., Kalaichelvan P. (2012): Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93: 95-99. Go to original source... Go to PubMed...
  42. Kurtjak M., Anicic N., Vukomanovicc M. (2017): Inorganic nanoparticles: Innovative tools for antimicrobial agents. In: Kumawat R.N. (ed.): Antibacterial Agents. Rijeka, InTech: 39-60. Go to original source...
  43. Liu Z., Cai W., He L., Nakayama N., Chen K., Sun X., Chen X., Dai H. (2007): In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology, 2: 47-52. Go to original source... Go to PubMed...
  44. López-León T., Carvalho E., Seijo B., Ortega-Vinuesa J., Bastos-González D. (2005): Physicochemical characterization of chitosan nanoparticles: Electrokinetic and stability behavior. Journal of Colloid and Interface Science, 283: 344-351. Go to original source... Go to PubMed...
  45. Lu C., Zhang C., Wen J., Wu G., Tao M. (2001): Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21: 168-171.
  46. Mahajan P., Dhoke S., Khanna A. (2011): Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology, 2011: 696535. doi: 10.1155/2011/696535 Go to original source...
  47. Martínez-Camacho A., Cortez-Rocha M., Ezquerra-Brauer J., Graciano-Verdugo A., Rodriguez-Félix F., Castillo-Ortega M., Yépiz-Gómez M., Plascencia-Jatomea M. (2010): Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 82: 305-315. Go to original source...
  48. McKnight T.E., Melechko A.V., Griffin G.D., Guillorn M.A., Merkulov V.I., Serna F., Hensley D.K., Doktycz M.J., Lowndes D.H., Simpson M.L. (2003): Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology, 14: 551. doi: 10.1088/0957-4484/14/5/313 Go to original source...
  49. Medarova Z., Pham W., Farrar C., Petkova V., Moore A. (2007): In vivo imaging of siRNA delivery and silencing in tumors. Nature Medicine, 13: 372-377. Go to original source... Go to PubMed...
  50. Mfon R.E., Odiaka N.I., Sarua A. (2017): Interactive effect of colloidal solutionof zinc oxide nanoparticles biosynthesized using Ocimum gratissimum and Vernonia amygdalina leaf extracts on the growth of Amaranthus cruentus seeds. African Journal of Biotechnology, 16: 1481-1489.
  51. Mittapally S., Taranum R., Parveen S. (2018): Metal ions as antibacterial agents. Drug Delivery and Therapeutics, 8: 411-419. Go to original source...
  52. Mitter N., Worrall E.A., Robinson K.E., Li P., Jain R.G., Taochy C., Fletcher S.J., Carroll B.J., Lu G.Q., Xu Z.P. (2017): Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 3: 16207. doi: 10.1038/nplants.2016.207 Go to original source... Go to PubMed...
  53. Muzzarelli R.A. (1983): Chitin and its derivatives: New trends of applied research. Carbohydrate Polymers, 3: 53-75. Go to original source...
  54. Niemeyer C.M. (2001): Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angewandte Chemie International Edition, 40: 4128-4158. Go to original source... Go to PubMed...
  55. No H.K., Park N.Y., Lee S.H., Meyers S.P. (2002): Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74: 65-72. Go to original source... Go to PubMed...
  56. Palma-Guerrero J., Lopez-Jimenez J., Pérez-Berná A., Huang I.C., Jansson H.B., Salinas J., Villalaín J., Read N., LopezLlorca L. (2010): Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Molecular Microbiology, 75: 1021-1032. Go to original source... Go to PubMed...
  57. Pariona N., Paraguay-Delgado F., Basurto-Cereceda S., Morales-Mendoza J.E., Hermida-Montero L.A., Mtz-Enriquez A.I. (2020): Shape-dependent antifungal activity of ZnO particles against phytopathogenic fungi. Applied Nanoscience, 10: 435-443. Go to original source...
  58. Paul W., Sharma C.P. (2010): Inorganic nanoparticles for targeted drug delivery. In: Sharma C.P. (ed.): Biointegration of Medical Implant Materials: Science and Design. Boca Raton, CRC Press Editors: 204-235. Go to original source...
  59. Pospieszny H., Chirkov S., Atabekov J. (1991): Induction of antiviral resistance in plants by chitosan. Plant Science, 79: 63-68. Go to original source...
  60. Rabea E.I., Badawy M.E.T., Stevens C.V., Smagghe G., Steurbaut W. (2003): Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4: 1457-1465. Go to original source... Go to PubMed...
  61. Rai M., Deshmukh S., Gade A. (2012): Strategic nanoparticlemediated gene transfer in plants and animals - A novel approach. Current Nanoscience, 8: 170-179. Go to original source...
  62. Raikova O., Panichkin L., Raikova N. (2006): Studies on the effect of ultrafine metal powders produced by different methods on plant growth and development. Nanotechnologies and information technologies in the 21st century. In: Proceedings of the International Scientific and Practical Conference, May 18-19, 2006, Minsk, Belarus: 108-111.
  63. Ratcliff F., Martin-Hernandez A.M., Baulcombe D.C. (2001): Technical advance: Tobacco rattle virus as a vector for analysis of gene function by silencing. The Plant Journal, 25: 237-245. Go to original source... Go to PubMed...
  64. Roca M., Haes A.J. (2008): Probing cells with noble metal nanoparticle aggregates. Future Medicine, 3: 555-565. Go to original source... Go to PubMed...
  65. Rosi N.L., Giljohann D.A., Thaxton C.S., Lytton-Jean A.K., Han M.S., Mirkin C.A. (2006): Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 312: 1027-1030. Go to original source... Go to PubMed...
  66. Ryan J.A., Overton K.W., Speight M.E., Oldenburg C.N., Loo L., Robarge W., Franzen S., Feldheim D.L. (2007): Cellular uptake of gold nanoparticles passivated with BSA-SV40 large T antigen conjugates. Analytical Chemistry, 79: 9150-9159. Go to original source... Go to PubMed...
  67. Sandhu K.K., McIntosh C.M., Simard J.M., Smith S.W., Rotello V.M. (2002): Gold nanoparticle-mediated transfection of mammalian cells. Bioconjugate Chemistry, 13: 3-6. Go to original source... Go to PubMed...
  68. Sastry K., Rashmi H., Rao N. (2010): Nanotechnology patents as R&D indicators for disease management strategies in agriculture. Journal of Intellectual Property Rights, 15: 197-205.
  69. Savithramma N., Ankanna S., Bhumi G. (2012): Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision, 2: 61-68.
  70. Selivanov V., Zorin E. (2001): Sustained action of ultrafine metal powders on seeds of grain crops. Perspekt Materialy, 4: 66-69.
  71. Shang Y., Hasan M.K., Ahammed G.J., Li M., Yin H., Zhou J. (2019): Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24: 2558. doi: 10.3390/molecules24142558 Go to original source... Go to PubMed...
  72. Sharma M. (2019): Transdermal and intravenous nano drug delivery systems. In: Shyam M., Shivendu R., Nandita D., Raghvendra M., Sabu T. (eds): Application of Targeted Nano Drugs and Delivery Systems. Amsterdam, Elsevier: 499-550. Go to original source...
  73. Shenhar R., Rotello V.M. (2003): Nanoparticles: Scaffolds and building blocks. Accounts of Chemical Research, 36: 549-561. Go to original source... Go to PubMed...
  74. Silva A.T., Nguyen A., Ye C., Verchot J., Moon J.H. (2010): Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biology, 10: 291. doi: 10.1186/1471-2229-10-291 Go to original source... Go to PubMed...
  75. Sopeña F., Maqueda C., Morillo E. (2009): Controlled release formulations of herbicides based on micro-encapsulation. Ciencia e Investigación Agraria, 36: 27-42. Go to original source...
  76. Stanisic D., Costa A., Cruz G., Durán N., Tasic L. (2018): Applications of flavonoids with an emphasis on Hesperidin, as anticancer prodrugs: Phytotherapy as an alternative to chemotherapy. Studies in Natural Products Chemistry, 58: 161-212. Go to original source...
  77. Sun Y., Xia Y. (2002): Shape-controlled synthesis of gold and silver nanoparticles. Science, 298: 2176-2179. Go to original source... Go to PubMed...
  78. Sun T., Zhou D., Xie J., Mao F. (2007): Preparation of chitosan oligomers and their antioxidant activity. European Food Research and Technology, 225: 451-456. Go to original source...
  79. Sun L.F., Nasrullah, Ke F.Z., Nie Z.P., Wang P., Xu J.G. (2019): Citrus genetic engineering for disease resistance: Past, present and future. International Journal of Molecular Sciences, 20: 5256. doi: 10.3390/ijms20215256 Go to original source... Go to PubMed...
  80. Surud¾iæ R., Jankoviæ A., Bibiæ N., Vuka¹inoviæ-Sekuliæ M., Periæ-Grujiæ A., Mi¹koviæ-Stankoviæ V., Park S.J., Rhee K.Y. (2016): Physico-chemical and mechanical properties and antimicrobial activity of silver/poly(vinyl alcohol)/ graphene nanocomposites obtained by electrochemical method. Composites Part B: Engineering, 85: 102-112. Go to original source...
  81. Tang W., Weidner D.A., Hu B.Y., Newton R.J., Hu X.H. (2006): Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing. Plant Science, 171: 375-381. Go to original source... Go to PubMed...
  82. Tang Y., Wang F., Zhao J., Xie K., Hong Y., Liu Y. (2010): Virusbased microRNA expression for gene functional analysis in plants. Plant Physiology, 153: 632-641. Go to original source... Go to PubMed...
  83. Thomas M., Klibanov A.M. (2003): Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells. Proceedings of the National Academy of Sciences, 100: 9138-9143. Go to original source... Go to PubMed...
  84. Torney F., Trewyn B.G., Lin V.S.Y., Wang K. (2007): Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2: 295-300. Go to original source... Go to PubMed...
  85. van Esse H.P., Reuber T.L., van der Does D. (2019): Genetic modification to improve disease resistance in crops. New Phytologist, 225: 70-86. Go to original source... Go to PubMed...
  86. Vincelli P.C. (2016): Genetially engineered crops: Emerging opportunities. Agriculture and Natural Resources Publications: 122.
  87. Wally O., Punja K.Z. (2010): Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops, 1: 199-206. Go to original source... Go to PubMed...
  88. Worrall E.A., Hamid A., Mody K.T., Mitter N., Hanu H.R. (2018): Nanotechnology for plant disease management. Agronomy, 8: 285. doi: 10.3390/agronomy8120285 Go to original source...
  89. Xu Z.P., Zeng Q.H., Lu G.Q., Yu A.B. (2006): Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 61: 1027-1040. Go to original source...
  90. Xu L., Liu Y., Bai R., Chen C. (2010): Applications and toxicological issues surrounding nanotechnology in the food industry. Pure and Applied Chemistry, 82: 349-372. Go to original source...
  91. Zare Y., Rhee K.Y., Hui D. (2017): Influences of nanoparticle aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites. Composites Part B: Engineering, 122: 41-46. Go to original source...
  92. Zhou H.Y., Zhou D.J., Zhang W.F., Jiang L.J., Li J.B., Chen X.G. (2011): Biocompatibility and characteristics of chitosan/ cellulose acetate microspheres for drug delivery. Frontiers of Materials Science, 5: 367-378. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.