J. For. Sci., 2022, 68(9):344-356 | DOI: 10.17221/3/2022-JFS

Radial growth, present status and future prospects of west Himalayan fir (Abies pindrow Royle) growing in the moist temperate forest of Himalayan mountains of PakistanOriginal Paper

Zahid Rauf1, Adam Khan ORCID...*,2, Samina Siddiqui3, Sidra Saleem4, Tahir Iqbal1, Safdar Ali Shah1, Nowsherwan Zarif1, Wahiba Iqbal1
1 Pakistan Forest Institute, Peshawar, Pakistan
2 Department of Botany, University of Lakki Marwat, Lakki Marwat, Pakistan
3 National Centre of Excellence in Geology, University of Peshawar, Peshawar, Pakistan
4 Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan

Forests play a significant role for maintaining the biodiversity. In order to manage sustainable forests, tree species history, distribution, and their future prospects are vital. Using standardized quantitative approaches, the age, radial growth, and size class distribution of Abies pindrow (Himalayan fir) were determined from three different altitudinal sites (i.e. high, middle, and lower). The results indicate that Himalayan fir growing in the high-altitude site (Ayubia, 2 917 m a.s.l.) of moist temperate forests of the Himalayan mountains showed lower radial growth (0.13 cm) than in the middle (Bara Gali, 2 617 m a.s.l.; radial growth = 0.13 cm) and lower (Kuldana, 2 455 m a.s.l.; radial growth = 0.22 cm) altitude sites. Correlation analysis demonstrated that age showed a significant positive correlation (P < 0.001) with diameter at breast height. The tree-ring width chronology (totally 80 core samples) of Himalayan fir was developed from moist temperate forests of Himalayan mountains of Pakistan. At Ayubia site it possesses a long time-span (1703-2020 C.E.), followed by Bara Gali (1862-2020 C.E.) and Kuldana (1864-2020 C.E.). Further, the tree-ring width (TRW) chronology of Ayubia showed a significant positive correlation (P < 0.05) with May and June temperature, and a significant negative correlation (P < 0.05) with June and October precipitation, indicating that summer temperatures are the key factor for the radial growth of Himalayan fir. For the Kuldana site, the response of TRW chronology to temperature and precipitation was the same, however, it was significant only for June temperature at Bara Gali. The size class distribution of the high-altitude region (Ayubia) showed a higher number of individuals than the lower altitude region, indicating the lowest disturbance conditions. The absence of individuals in the early size classes and the gap in middle and mature size classes indicate a lower regeneration potential and anthropogenic impact. The pointer year analysis indicated that the Bara Gali forest is more sensitive to abnormal climate events than the other sites. Based on the present study, we suggest that proper attention and conservation strategy should be provided to Himalayan fir growing in the moist temperate forests of Pakistan.

Keywords: altitude gradient; climate factors; forest structure; growth-climate response; tree-ring chronology

Published: September 29, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Rauf Z, Khan A, Siddiqui S, Saleem S, Iqbal T, Shah SA, et al.. Radial growth, present status and future prospects of west Himalayan fir (Abies pindrow Royle) growing in the moist temperate forest of Himalayan mountains of Pakistan. J. For. Sci.. 2022;68(9):344-356. doi: 10.17221/3/2022-JFS.
Download citation

Supplementary files:

Download file3-2022-JFS ESM.pdf

File size: 178.95 kB

References

  1. Aftab E., Hickey G.M. (2010): Forest administration challenges in Pakistan: The case of the Patriata reserved forest and the new Murree development. International Forestry Review, 12: 97-105. Go to original source...
  2. Agren J., Zackrisson O. (1990): Age and size structure of Pinus sylvestris populations on mires in central and northern Sweden. The Journal of Ecology, 78: 1049-1062. Go to original source...
  3. Ahmad S., Zhu L., Yasmeen S., Zhang Y., Li Z., Ullah S., Han S., Wang X. (2020): A 424-year tree-ring-based Palmer Drought Severity Index reconstruction of Cedrus deodara D. Don from the Hindu Kush range of Pakistan: Linkages to ocean oscillations. Climate of the Past, 16: 783-798. Go to original source...
  4. Ahmed M. (1984): Ecological and dendrochronological studies on Agathis australis Salisb. (kauri). [Ph.D. Thesis.] Auckland, University of Auckland.
  5. Ahmed M. (1988a): Problems encountered in age estimation of forest tree species. Pakistan Journal of Botany, 20: 143-145.
  6. Ahmed M. (1988b): Population structure of some planted tree species in Quetta. Journal of Pure and Applied Science, 7: 25-29.
  7. Ahmed M. (1989): Tree-ring chronologies of Abies pindrow (Royle) spach, from Himalayan region of Pakistan. Pakistan Journal of Botany, 21: 347-354.
  8. Ahmed M., Naqvi S.H. (2005): Tree ring chronologies of Picea smithiana (Wall.) Boiss., and its quantitative vegetation description from Himalayan region of Pakistan. Pakistan Journal of Botany, 37: 697-707.
  9. Ahmed M., Ogden J. (1985): Modern New Zealand tree-ring chronologies III. Agathis australis Salisb. kauri. Tree-Ring Bulletin, 45: 11-24.
  10. Ahmed M., Sarangzai A.M. (1991): Dendrochronological approach to estimate age and growth rate of various species from Himalayan region of Pakistan. Pakistan Journal of Botany, 23: 78-89.
  11. Ahmed M., Sarangzai A.M. (1992): Dendrochronological potential of few tree species from Himalayan region of Pakistan. Journal of Pure and Applied Science, 11: 65-67.
  12. Ahmed M., Nagi E.E., Wang E.L.M. (1990a): Present state of juniper in Rodhmallazi Forest of Balochistan, Pakistan. Pakistan Journal of Forestry, 40: 227-236.
  13. Ahmed M., Shaukat S.S., Buzdar, A.H. (1990b): Population structure and dynamics of Juniperus excelsa in Balouchistan, Pakistan. Journal of Vegetation Science, 1: 271-276. Go to original source...
  14. Ahmed M., Wahab M., Khan N., Siddiqui M.F, Khan M.U., Hussain S.T. (2009): Age and growth rates of some gymnosperms in Pakistan: A dendrochronological approach. Pakistan Journal of Botany, 41: 849-860.
  15. Ahmed M., Nazim K., Siddiqui M.F., Wahab M., Khan N., Khan M.U., Hussain S.S. (2010a): Community description of Deodar forests from Himalayan range of Pakistan. Pakistan Journal of Botany, 42: 3091-3102.
  16. Ahmed M., Wahab M., Khan N., Palmer J., Nazim K., Khan M.U., Siddiqui M.F. (2010b): Some preliminary results of climatic studies based on two pine tree species of Himalayan area of Pakistan. Pakistan Journal of Botany, 42: 731-738.
  17. Ahmed M., Palmer J., Khan N., Wahab M., Fenwick P., Esper J., Cook E.D. (2011): The dendroclimatic potential of conifers from Northern Pakistan. Dendrochronologia, 29: 77-88. Go to original source...
  18. Ahmed M., Khan N., Wahab M., Zafar U., Palmer J. (2012): Climate/growth correlation of tree species in the Indus Basin of the Karakorum Range, North Pakistan. IAWA Journal, 33: 51-56. Go to original source...
  19. Akbar M. (2013): Forest vegetation and dendrochronology of Gilgit, Astore and Skardu districts of Northern Areas (Gilgit-Baltistan), Pakistan. [Ph.D. Thesis.] Islamabad, Federal Urdu University of Arts, Science and Technology.
  20. Archer D.R., Fowler H.J. (2008): Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan. Journal of Hydrology, 361: 10-23. Go to original source...
  21. Asad F., Zhu H., Zhang H., Liang E., Muhammad S., Farhan S.B., Hussain I., Wazir M.A., Ahmed M., Esper J. (2017): Are Karakoram temperatures out of phase compared to hemispheric trends? Climate Dynamics, 48: 3381-3390. Go to original source...
  22. Bigler C. (2016): Trade-offs between radial growth, tree size and lifespan of mountain pine (Pinus montana) in the Swiss National Park. PloS ONE, 11: e0150402. Go to original source... Go to PubMed...
  23. Bunn A.G. (2008): A dendrochronology program library in R (dplR). Dendrochronologia 26: 115-124. Go to original source...
  24. Caetano Andrade V.L., Flores B.M., Levis C., Clement C.R., Roberts P., Schöngart J. (2019): Growth rings of Brazil nut trees (Bertholletia excelsa) as a living record of historical human disturbance in Central Amazonia. PloS ONE, 14: e0214128. Go to original source... Go to PubMed...
  25. Champion H.G., Seth S.K., Khattak G.M. (1965): Forest Types of Pakistan. Peshawar, Pakistan Forest Institute: 238.
  26. Cook E.R. (1985): A time series analysis approach to tree ring standardization. [Ph.D. Thesis.] Tuscon, University of Arizona.
  27. Cronin R.P., Pandya A. (2009): Exploiting natural resources: Growth, instability, and conflict in the Middle East and Asia. Washington D.C., Henry L. Stimson Center: 97.
  28. Cukor J., Vacek Z., Linda R., Sharma R.P., Vacek S. (2019): Afforested farmland vs. forestland: Effects of bark stripping by Cervus elaphus and climate on production potential and structure of Picea abies forests. PloS ONE, 14: e0221082. Go to original source... Go to PubMed...
  29. Debel A., Meier W.J.H., Bräuning A. (2021): Climate signals for growth variations of F. sylvatica, P. abies, and P. sylvestris in southeast Germany over the past 50 years. Forests, 12: 1433. Go to original source...
  30. Esper J., Schweingruber F.H., Winiger M. (2002): 1300 years of climatic history for Western Central Asia inferred from tree-rings. The Holocene, 12: 267-277. Go to original source...
  31. Gairola S., Rawal R.S., Todaria N.P. (2008): Forest vegetation patterns along an altitudinal gradient in subalpine zone of west Himalaya, India. African Journal of Plant Sciences, 2: 42-48.
  32. Gao L., Gou X., Deng Y., Yang M., Zhang F. (2017): Assessing the influences of tree species, elevation and climate on tree-ring growth in the Qilian Mountains of northwest China. Trees 31: 393-404. Go to original source...
  33. Grissino-Mayer H.D. (2001): Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-ring Research, 57: 205-221.
  34. He M., Yang B., Bräuning A. (2013): Tree growth-climate relationships of Juniperus tibetica along an altitudinal gradient on the southern Tibetan Plateau. Trees, 27: 429-439. Go to original source...
  35. Holmes R.L. (1983): Computer-assisted quality control in treering dating and measurement. Tree-ring Bulletin, 43: 69-78.
  36. Hughes M.K., Davies A.C. (1986): Dendroclimatology in Kashmir using tree-ring width and densities in subalpine conifers. In: Kairiukštis L., Bednarz Z., Feliksik E. (eds): Methods of Dendrochronology. Proceedings of the Task Force Meeting on Methodology of Dendrochronology, East/West Approaches, Krakow, June 2-6, 1986: 163-176.
  37. Hussain A. (2013): Phytosociology and dendrochronological studies of Central Karakorum potential (CKNP), Northern areas, Gilgit-Baltistan. [Ph.D. Thesis.] Karachi, Federal Urdu University of Arts, Science and Technology.
  38. Hussain A., Farooq M.A., Ahmed M., Zafar M.U., Akbar M. (2010): Phytosociology and structure of Central Karakoram National Park (CKNP) of Northern Areas of Pakistan. World Applied Sciences Journal, 9: 1443-1449.
  39. Iqbal J., Ahmed M., Siddiqui M.F., Khan A. (2020): Tree ring studies from some conifers and present condition of forest of Shangla district of Khyber Pukhtunkhwa Pakistan. Pakistan Journal of Botany, 52: 653-662. Go to original source...
  40. Khai T.C., Mizoue N., Ota T. (2020): Post-harvest stand dynamics over five years in selectively logged production forests in Bago, Myanmar. Forests, 11: 195. Go to original source...
  41. Khan A. (1968): Ecopathological observation in Trarkhal Forest. Part 1. Regeneration status of the forest. Pakistan Journal of Forestry, 18: 169-228.
  42. Khan N. (2011): Vegetation ecology and dendrochronology of Chitral. [Ph.D. Thesis.] Karachi, Federal Urdu University of Arts, Science and Technology.
  43. Khan A. (2017): Ecological and dendrochronological studies of pine forest from Indus Kohistan, KPK, Pakistan. [Ph.D. Thesis.] Karachi, Federal Urdu University of Arts, Science and Technology.
  44. Khan N., Ahmed M., Wahab M. (2008): Dendroclimatic potential of Picea smithiana (Wall) Boiss, from Afghanistan. Pakistan Journal of Botany, 40: 1063-1070.
  45. Khan N., Ahmed M., Wahab M., Nazim K. (2010): Size class structure and regeneration potential of Monotheca buxifolia (Falc.) A. DC. dominated forests district Dir lower Pakistan. International Journal of Biology and Biotechnology, 7: 187-196.
  46. Khan, A., Ahmed M., Siddiqui M.F., Iqbal J., Wahab M. (2016): Phytosociological analysis of pine forest at Indus Kohistan, KPK, Pakistan. Pakistan Journal of Botany, 48: 575-580.
  47. Khan A., Ahmed M., Siddiqui M.F., Iqbal J., Gaire N.P. (2018): Dendrochronological potential of Abies pindrow Royle from Indus Kohistan, Khyber Pakhtunkhwa (KPK) Pakistan. Pakistan Journal of Botany, 50: 365-369.
  48. Khan A., Ahmed M., Gaire N.P., Iqbal J., Siddiqui M.F., Khan A., Shah M., Hazrat A., Saqib N.A., Mashwani W.K., Shah S., Bhandari S. (2021a): Tree-ring-based temperature reconstruction from the western Himalayan region in northern Pakistan since 1705 C.E. Arabian Journal of Geosciences, 14: 1112. Go to original source...
  49. Khan A., Ahmed M., Khan A., Siddiqui M.F., Shah M., Hazrat A. (2021b): Quantitative description, present status and future trend of conifer forests growing in the Indus Kohistan region of Khyber Pakhtunkhwa, Pakistan. Pakistan Journal of Botany, 53: 1343-1353. Go to original source...
  50. Lamarche V.C. (1974): Frequency-dependent relationships between tree-ring series along an ecological gradient and some dendroclimatic implications. Tree-Ring Bulletin, 34: 1-20.
  51. Lamarche V.C. (1982): Sampling strategies. In: Hughes M.K., Kelly P.M., Pilcher J.R., Lamarche V.C. (eds): Climate from Tree-Rings. Cambridge, Cambridge University Press: 1-223.
  52. Landis R.M., Peart D.R. (2005): Early performance predicts canopy attainment across life histories in subalpine forest trees. Ecology, 86: 63-72. Go to original source...
  53. Liang E., Wang Y., Eckstein D., Luo T. (2011): Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytologist, 190: 760-769. Go to original source... Go to PubMed...
  54. Lo Y.H., Blanco J.A., Seely B., Welham C., Kimmins J.H. (2010): Relationships between climate and tree radial growth in interior British Columbia, Canada. Forest Ecology and Management, 259: 932-942. Go to original source...
  55. Lusk C.H., Smith, B. (1998): Life history differences and tree species coexistence in an old-growth New Zealand rain forest. Ecology, 79: 795-806. Go to original source...
  56. Mäkinen H., Nöjd P., Kahle H.P., Neumann U., Tveite B., Mielikäinen K., Röhle H., Spiecker H. (2002): Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Forest Ecology and Management, 171: 243-259. Go to original source...
  57. Martín-Benito D., Cherubini P., Del Río M., Cañellas I. (2008): Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees, 22: 363-373. Go to original source...
  58. Melo F.P., Arroyo-Rodríguez V., Fahrig L., MartínezRamos M. Tabarelli M. (2013): On the hope for biodiversity-friendly tropical landscapes. Trends in Ecology and Evolution, 28: 462-468. Go to original source... Go to PubMed...
  59. Nazareno A.G., Feres J.M., de Carvalho D., Sebbenn A.M., Lovejoy T.E. Laurance W.F. (2012): Serious new threat to Brazilian forests. Conservation Biology, 26: 5-6. Go to original source... Go to PubMed...
  60. Neuwirth B., Esper J., Schweingruber F.H., Winiger M. (2004): Site ecological differences to the climatic forcing of spruce pointer years from the Lotschental, Switzerland. Dendrochronologia, 21: 69-78 Go to original source...
  61. Neuwirth B., Schweingruber F.H., Winiger M. (2007): Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia, 24: 79-89 Go to original source...
  62. Owczarek P., Opała M. (2016): Dendrochronology and extreme pointer years in the tree-ring record (AD 1951-2011) of polar willow from southwestern Spitsbergen (Svalbard, Norway). Geochronometria, 43: 84-95. Go to original source...
  63. Putalová T., Vacek Z., Vacek S., Štefančík I., Bulušek D., Král J. (2019): Tree-ring widths as an indicator of air pollution stress and climate conditions in different Norway spruce forest stands in the Krkonoše Mts. Central European Forestry journal, 65: 21-33. Go to original source...
  64. Rahman M., Islam M., Braeuning A. (2018): Tree radial growth is projected to decline in South Asian moist forest trees under climate change. Global and Planetary Change, 170: 106-119. Go to original source...
  65. Remeš J., Bílek L., Novák J., Vacek Z., Vacek S., Putalová T., Koubek L. (2015): Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity. Journal of Forest Science, 61: 456-464. Go to original source...
  66. Schweingruber F.H., Eckstein D., Serre-Bachet F., Bräker O.U. (1990): Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia, 8: 9-38.
  67. Sheikh M.I. (1985): Afforestation in Juniper Forests of Baluchistan. Peshawar, Pakistan Forest Institute: 46.
  68. Siddiqui M. (2011): Community structure and dynamics of coniferous forests of moist temperate areas of Himalayan and Hindukush range of Pakistan. [Ph. D. Thesis.] Karachi, Federal Urdu University of Arts, Science and Technology.
  69. Siddiqui M.F., Shaukat S.S., Ahmed M., Khan N., Khan I.A. (2013): Age and radial growths of dominant conifers from moist temperate areas of Himalayan and Hindukush region of Pakistan. Pakistan Journal of Botany, 45: 1135-1147.
  70. Sidor C.G., Popa I., Vlad R., Cherubini P. (2015): Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees, 29: 985-997. Go to original source...
  71. Speer J.H. (2010): Fundamentals of Tree-Ring research. Tuscon, University of Arizona Press: 368.
  72. Spies T.A., Franklin J.F. (1991): The structure of natural young, mature, and old-growth Douglas-fir forests in Oregon and Washington. In: Ruggiero L.F., Aubry K.B., Carey A.B., Huff M.H. (eds): Wildlife and Vegetation of Unmanaged Douglas-fir Forests. Portland, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 91-109.
  73. Stewart G.H. (1986): Population dynamics of a montane conifer forest, western Cascade Range, Oregon, USA. Ecology, 67: 534-544. Go to original source...
  74. Swati A.S. (1953): Note on the Junipers Forest of Balochistan. Unpublished Report of Balochistan Forest Department. Ziarat, Balochistan Forest Department: 27.
  75. Šimůnek V., Vacek Z., Vacek S., Ripullone F., Hájek V., D'Andrea G. (2021): Tree rings of European beech (Fagus sylvatica L.) indicate the relationship with solar cycles during climate change in central and southern Europe. Forests, 12: 259. Go to original source...
  76. Štefančík I., Vacek Z., Sharma R.P., Vacek S., Rösslová M. (2018): Effect of thinning regimes on growth and development of crop trees in Fagus sylvatica stands of Central Europe over fifty years. Dendrobiology, 79: 141-155. Go to original source...
  77. Timilsina N., Ross M.S., Heinen J.T. (2007): A community analysis of sal (Shorea robusta) forests in the western Terai of Nepal. Forest Ecology and Management, 241: 223-234. Go to original source...
  78. Treydte K.S., Schleser G.H., Helle G., Frank D.C., Winiger M., Haug G.H., Esper J. (2006): The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature, 440: 1179-1182. Go to original source... Go to PubMed...
  79. Vacek S., Vacek Z., Remeš J., Bílek L., Hůnová I., Bulušek D., Putalová T., Král J., Simon J. (2017): Sensitivity of unmanaged relict pine forest in the Czech Republic to climate change and air pollution. Trees, 31: 1599-1617. Go to original source...
  80. Vacek S., Vacek Z., Bílek L., Remeš J., Hůnová I., Bulušek D., Král J., Brichta J. (2019): Stand dynamics in natural Scots pine forests as a model for adaptation management? Dendrobiology, 82: 24-44. Go to original source...
  81. Vacek Z., Prokůpková A., Vacek S., Bulušek D., Šimůnek V., Hájek V., Králíček I. (2021): Mixed vs. monospecific mountain forests in response to climate change: structural and growth perspectives of Norway spruce and European beech. Forest Ecology and Management, 488: 119019. Go to original source...
  82. Wahab M., Ahmed M., Khan N. (2008): Phytosociology and dynamics of some pine forests of Afghanistan. Pakistan Journal of Botany, 40: 1071-1079.
  83. Worrell R., Malcolm D.C. (1990a): Productivity of Sitka spruce in Northern Britain 1. The effects of elevation and climate. Forestry: An International Journal of Forest Research, 63: 105-118. Go to original source...
  84. Worrell R., Malcolm, D.C. (1990b): Productivity of Sitka spruce in Northern Britain 2. Prediction from site factors. Forestry: An International Journal of Forest Research, 63: 119-128. Go to original source...
  85. Yang X., Blagodatsky S., Marohn C., Liu H., Golbon R., Xu J., Cadisch G. (2019): Climbing the mountain fast but smart: Modelling rubber tree growth and latex yield under climate change. Forest Ecology and Management, 439: 55-69. Go to original source...
  86. Zafar M.U. (2013): Water analysis and climatic history of Gilgit and Hunza valleys. [Ph.D. Thesis.] Karachi, Federal Urdu University of Arts, Science and Technology.
  87. Zafar M.U., Ahmed M., Rao M.P., Buckley B.M., Khan N., Wahab M., Palmer J. (2016): Karakorum temperature out of phase with hemispheric trends for the past five centuries. Climate Dynamics, 46: 1943-1952. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.